BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 10636083)

  • 1. Differential stability of the triple helix of (Pro-Pro-Gly)10 in H2O and D2O: thermodynamic and structural explanations.
    Gough CA; Bhatnagar RS
    J Biomol Struct Dyn; 1999 Dec; 17(3):481-91. PubMed ID: 10636083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of bound water in the stability of the triple-helical conformation of (Pro-Pro-Gly)10.
    Gough CA; Anderson RW; Bhatnagar RS
    J Biomol Struct Dyn; 1998 Jun; 15(6):1029-37. PubMed ID: 9669549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl-4(R)-hydroxyprolylglycine]10.
    Kawahara K; Nishi Y; Nakamura S; Uchiyama S; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    Biochemistry; 2005 Dec; 44(48):15812-22. PubMed ID: 16313184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent higher order structures of the (Pro-Pro-Gly)₁₀-modified dendrimer.
    Suehiro T; Tada T; Waku T; Tanaka N; Hongo C; Yamamoto S; Nakahira A; Kojima C
    Biopolymers; 2011 Apr; 95(4):270-7. PubMed ID: 21280022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, dynamics, and hydration of a collagen model polypeptide, (L-prolyl-L-prolylglycyl)10, in aqueous media: a chemical equilibrium analysis of triple helix-to-single coil transition.
    Shikata T; Minakawa A; Okuyama K
    J Phys Chem B; 2009 Oct; 113(43):14504-12. PubMed ID: 19761216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H2O and D2O. Determination of the thermodynamic parameters, deltaH(o), deltaS(o), and deltaC(o)p and evaluation of solvent isotope effects.
    Kuhlman B; Raleigh DP
    Protein Sci; 1998 Nov; 7(11):2405-12. PubMed ID: 9828007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops.
    Taylor JW; Greenfield NJ; Wu B; Privalov PL
    J Mol Biol; 1999 Aug; 291(4):965-76. PubMed ID: 10452900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix.
    Nishi Y; Uchiyama S; Doi M; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    Biochemistry; 2005 Apr; 44(16):6034-42. PubMed ID: 15835892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of H2O and D2O on polyproline II helical structure.
    Chellgren BW; Creamer TP
    J Am Chem Soc; 2004 Nov; 126(45):14734-5. PubMed ID: 15535694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering.
    Okuyama K; Hongo C; Wu G; Mizuno K; Noguchi K; Ebisuzaki S; Tanaka Y; Nishino N; Bächinger HP
    Biopolymers; 2009 May; 91(5):361-72. PubMed ID: 19137577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique side chain conformation of a Leu residue in a triple-helical structure.
    Okuyama K; Narita H; Kawaguchi T; Noguchi K; Tanaka Y; Nishino N
    Biopolymers; 2007 Jun; 86(3):212-21. PubMed ID: 17373653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution.
    Dong A; Kendrick B; Kreilgârd L; Matsuura J; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1997 Nov; 347(2):213-20. PubMed ID: 9367527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural consequences of D-amino acids in collagen triple-helical peptides.
    Shah NK; Brodsky B; Kirkpatrick A; Ramshaw JA
    Biopolymers; 1999 Apr; 49(4):297-302. PubMed ID: 10079768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cystine knots in collagen folding and stability, part I. Conformational properties of (Pro-Hyp-Gly)5 and (Pro-(4S)-FPro-Gly)5 model trimers with an artificial cystine knot.
    Barth D; Musiol HJ; Schütt M; Fiori S; Milbradt AG; Renner C; Moroder L
    Chemistry; 2003 Aug; 9(15):3692-702. PubMed ID: 12898696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new approach to the thermodynamic role of imino acids in collagen. Solution of a thermodynamic paradox].
    Esipova NG; Aĭzenkhaber F; Aĭzenmenger F; Tumanian VG
    Biofizika; 1992; 37(1):68-72. PubMed ID: 1520719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy of hydration of collagen models and the enthalpy of the transition between the triple-helical coiled-coil and single-stranded conformations.
    Némethy G; Scheraga HA
    Biopolymers; 1989 Sep; 28(9):1573-84. PubMed ID: 2775848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide.
    Chen YS; Chen CC; Horng JC
    Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.