BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10636084)

  • 1. Comparative molecular dynamics of mesophilic and psychrophilic protein homologues studied by 1.2 ns simulations.
    Brandsdal BO; Heimstad ES; Sylte I; Smalås AO
    J Biomol Struct Dyn; 1999 Dec; 17(3):493-506. PubMed ID: 10636084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2009; 27(8):871-80. PubMed ID: 19223214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold adaption of enzymes: structural comparison between salmon and bovine trypsins.
    Smalås AO; Heimstad ES; Hordvik A; Willassen NP; Male R
    Proteins; 1994 Oct; 20(2):149-66. PubMed ID: 7846025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold adaptation of enzyme reaction rates.
    Bjelic S; Brandsdal BO; Aqvist J
    Biochemistry; 2008 Sep; 47(38):10049-57. PubMed ID: 18759500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site.
    Gorfe AA; Brandsdal BO; Leiros HK; Helland R; Smalås AO
    Proteins; 2000 Aug; 40(2):207-17. PubMed ID: 10842337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases.
    Papaleo E; Pasi M; Riccardi L; Sambi I; Fantucci P; De Gioia L
    FEBS Lett; 2008 Mar; 582(6):1008-18. PubMed ID: 18307991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structure, conformational analysis, and structure-activity studies of Dendrotoxin and its homologues using molecular mechanics and molecular dynamics techniques.
    Swaminathan P; Hariharan M; Murali R; Singh CU
    J Med Chem; 1996 May; 39(11):2141-55. PubMed ID: 8667358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic properties of extremophilic subtilisin-like serine-proteases.
    Tiberti M; Papaleo E
    J Struct Biol; 2011 Apr; 174(1):69-83. PubMed ID: 21276854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a non-psychrophilic trypsin from a cold-adapted fish species.
    Schrøder HK; Willassen NP; Smalås AO
    Acta Crystallogr D Biol Crystallogr; 1998 Sep; 54(Pt 5):780-98. PubMed ID: 9757092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative unfolding studies of psychrophilic and mesophilic uracil DNA glycosylase: MD simulations show reduced thermal stability of the cold-adapted enzyme.
    Olufsen M; Brandsdal BO; Smalås AO
    J Mol Graph Model; 2007 Jul; 26(1):124-34. PubMed ID: 17134924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the dynamics of bovine and human angiogenin: a molecular dynamics study.
    Madhusudhan MS; Vishveshwara S
    Biopolymers; 1999 Feb; 49(2):131-44. PubMed ID: 10070263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interscaffolding additivity: binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine proteases.
    Krowarsch D; Dadlez M; Buczek O; Krokoszynska I; Smalas AO; Otlewski J
    J Mol Biol; 1999 May; 289(1):175-86. PubMed ID: 10339415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution structures of three new trypsin-squash-inhibitor complexes: a detailed comparison with other trypsins and their complexes.
    Helland R; Berglund GI; Otlewski J; Apostoluk W; Andersen OA; Willassen NP; Smalås AO
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):139-48. PubMed ID: 10089404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach.
    Gohlke H; Kuhn LA; Case DA
    Proteins; 2004 Aug; 56(2):322-37. PubMed ID: 15211515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative molecular dynamics simulation studies of salmon and bovine trypsins in aqueous solution.
    Heimstad ES; Hansen LK; Smalås AO
    Protein Eng; 1995 Apr; 8(4):379-88. PubMed ID: 7567923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic effects play a central role in cold adaptation of trypsin.
    Brandsdal BO; Smalås AO; Aqvist J
    FEBS Lett; 2001 Jun; 499(1-2):171-5. PubMed ID: 11418134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the native and the ligand-bound structures of eosinophil cationic protein: network of hydrogen bonds at the catalytic site.
    Sanjeev BS; Vishveshwara S
    J Biomol Struct Dyn; 2005 Jun; 22(6):657-72. PubMed ID: 15842171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.