These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10636309)

  • 1. Conditioned stimulus control in the rat circadian system depends on clock resetting during conditioning.
    Arvanitogiannis A; Amir S
    Behav Neurosci; 1999 Dec; 113(6):1297-300. PubMed ID: 10636309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditioning in the circadian system.
    Amir S; Stewart J
    Chronobiol Int; 1998 Sep; 15(5):447-56. PubMed ID: 9787935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of the circadian system of rats to conditioned and unconditioned stimuli.
    de Groot MH; Rusak B
    J Biol Rhythms; 2000 Aug; 15(4):277-91. PubMed ID: 10942258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel, associative process modulating photic resetting of the circadian clock.
    Arvanitogiannis A; Amir S
    Neuroscience; 2001; 104(3):615-8. PubMed ID: 11440794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditioned fear suppresses light-induced resetting of the circadian clock.
    Amir S; Stewart J
    Neuroscience; 1998 Sep; 86(2):345-51. PubMed ID: 9881852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resetting of the circadian clock by a conditioned stimulus.
    Amir S; Stewart J
    Nature; 1996 Feb; 379(6565):542-5. PubMed ID: 8596633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory stimulation enhances light-induced phase shifts in free-running activity rhythms and Fos expression in the suprachiasmatic nucleus.
    Amir S; Cain S; Sullivan J; Robinson B; Stewart J
    Neuroscience; 1999; 92(4):1165-70. PubMed ID: 10426475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental alcohol exposure alters light-induced phase shifts of the circadian activity rhythm in rats.
    Farnell YZ; West JR; Chen WJ; Allen GC; Earnest DJ
    Alcohol Clin Exp Res; 2004 Jul; 28(7):1020-7. PubMed ID: 15252288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral responses to combinations of timed light, food availability, and ultradian rhythms in the common vole (Microtus arvalis).
    van der Veen DR; Saaltink DJ; Gerkema MP
    Chronobiol Int; 2011 Aug; 28(7):563-71. PubMed ID: 21790327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction.
    Mendoza J; Drevet K; Pévet P; Challet E
    J Neuroendocrinol; 2008 Feb; 20(2):251-60. PubMed ID: 18088363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Induced resetting of the circadian pacemaker: quantitative analysis of transient versus steady-state phase shifts.
    Watanabe K; Deboer T; Meijer JH
    J Biol Rhythms; 2001 Dec; 16(6):564-73. PubMed ID: 11760014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Social influences on mammalian circadian rhythms: animal and human studies.
    Mistlberger RE; Skene DJ
    Biol Rev Camb Philos Soc; 2004 Aug; 79(3):533-56. PubMed ID: 15366762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Entrainment of Circadian Locomotor and Transcriptional Rhythms in the Cricket,
    Kannan NN; Tomiyama Y; Nose M; Tokuoka A; Tomioka K
    Zoolog Sci; 2019 Apr; 36(2):95-104. PubMed ID: 31120643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system.
    Gerkema MP; Daan S; Wilbrink M; Hop MW; van der Leest F
    J Biol Rhythms; 1993; 8(2):151-71. PubMed ID: 8369551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.
    Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA
    J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effectiveness of light on the circadian clock is linked to its emotional value.
    Amir S; Stewart J
    Neuroscience; 1999 Jan; 88(2):339-45. PubMed ID: 10197756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus).
    Nelson DE; Takahashi JS
    J Physiol; 1991 Aug; 439():115-45. PubMed ID: 1895235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.