These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 106370)

  • 61. Base sequence complexity of the stable RNA species of Drosophila melanogaster.
    Weber L; Berger E
    Biochemistry; 1976 Dec; 15(25):5511-9. PubMed ID: 826268
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The initiator tRNA genes of Drosophila melanogaster: evidence for a tRNA pseudogene.
    Sharp S; DeFranco D; Silberklang M; Hosbach HA; Schmidt T; Kubli E; Gergen JP; Wensink PC; Söll D
    Nucleic Acids Res; 1981 Nov; 9(22):5867-82. PubMed ID: 6273811
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nucleotide sequence relationships between vertebrate 5.8 S ribosomal RNAs.
    Khan MS; Maden BE
    Nucleic Acids Res; 1977 Jul; 4(7):2495-505. PubMed ID: 409998
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The nucleotide sequence of the maize and spinach chloroplast isoleucine transfer RNA encoded in the 16S to 23S rDNA spacer.
    Guillemaut P; Weil JH
    Nucleic Acids Res; 1982 Mar; 10(5):1653-9. PubMed ID: 6917975
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The nucleotide sequence of phenylalanine tRNA from Mycoplasma sp. (Kid).
    Kimball ME; Szeto KS; Soll D
    Nucleic Acids Res; 1974 Dec; 1(12):1721-32. PubMed ID: 4375278
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Extensions of the known sequences at the 3' and 5' ends of 23S ribosomal RNA from Escherichia coli, possible base pairing between these 23S RNA regions and 16S ribosomal RNA.
    Branlant C; Widada JS; Krol A; Ebel JP
    Nucleic Acids Res; 1976 Jul; 3(7):1671-87. PubMed ID: 823528
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The nucleotide sequence of tRNA4Val of Drosophila melanogaster. Chloroacetaldehyde modification as an aid to RNA sequencing.
    Addison WR; Gillam IC; Tener GM
    J Biol Chem; 1982 Jan; 257(2):674-7. PubMed ID: 6798031
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Replacement of the sequence G-T-phi-C-G(A)- by G-A-U-C-G- in initiator transfer RNA of rabbit-liver cytoplasm.
    Simsek M; Petrissant G; Rajbhandary UL
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2600-4. PubMed ID: 4354858
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The nucleotide sequence of asparagine tRNA from Escherichia coli.
    Ohashi K; Harada F; Ohashi Z; Nishimura S; Stewart TS; Vogeli G; McCutchan T; Soll D
    Nucleic Acids Res; 1976 Dec; 3(12):3369-76. PubMed ID: 794837
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nucleotide sequence of valine tRNA mo5UAC from bacillus subtilis.
    Murao K; Hasegawa T; Ishikura H
    Nucleic Acids Res; 1982 Jan; 10(2):715-8. PubMed ID: 6801627
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nucleotide sequence of Drosophila melanogaster 5S RNA: evidence for a general 5S RNA model.
    Benhamou J; Jordan BR
    FEBS Lett; 1976 Feb; 62(2):146-9. PubMed ID: 815108
    [No Abstract]   [Full Text] [Related]  

  • 72. The nucleotide sequence of arginine tRNACCG from bovine liver.
    Miller EK; Pirtle IL; Dudock BS; Pirtle RM
    Nucleic Acids Res; 1983 Apr; 11(7):2013-6. PubMed ID: 6550791
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human glutamate tRNA forms stable hybrids in vitro with 28S ribosomal RNA.
    Smardo FL; Calvet JP
    Nucleic Acids Res; 1987 Jan; 15(2):661-81. PubMed ID: 3644235
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Primary structure of Bombyx mori posterior silkgland tRNAPhe.
    Keith G; Dirheimer G
    Biochem Biophys Res Commun; 1980 Jan; 92(1):109-15. PubMed ID: 6766719
    [No Abstract]   [Full Text] [Related]  

  • 75. Nucleotide sequences of two aspartic acid tRNAs from rat liver and rat ascites hepatoma.
    Kuchino Y; Shindo-Okada N; Ando N; Watanabe S; Nishimura S
    J Biol Chem; 1981 Sep; 256(17):9059-62. PubMed ID: 6927846
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A rapid cytosine-specific modification of E. coli tRNA Leu 1 by semicarbazide-bisulfite, a probe for polynucleotide conformations.
    Negishi K; Harada F; Nishimura S; Hayatsu H
    Nucleic Acids Res; 1977 Jul; 4(7):2283-92. PubMed ID: 409997
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nucleotide sequence of wheat chloroplastid 4.5 S ribonucleic acid. Sequence homologies in 4.5 S RNA species.
    Wildeman AG; Nazar RN
    J Biol Chem; 1980 Dec; 255(24):11896-900. PubMed ID: 7440575
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Studies on the 3'-terminal sequences of the large ribosomal ribonucleic acid of different eukaryotes and those associated with "hidden" breaks in heart-dissociable insects 26S ribonucleic acid.
    Shine J; Hunt JA; Dalgarno L
    Biochem J; 1974 Sep; 141(3):617-25. PubMed ID: 4219141
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sequence of the 3'-terminal portion of Drosophila melanogaster 18 S rRNA and of the adjoining spacer: comparison with corresponding prokaryotic and eukaryotic sequences.
    Jordan BR; Latil-Damotte M; Jourdan R
    FEBS Lett; 1980 Aug; 117(1):227-31. PubMed ID: 6250894
    [No Abstract]   [Full Text] [Related]  

  • 80. The localization of tRNA4Glu genes from Drosophila melanogaster by "in situ" hybridization.
    Kubli E; Schmidt T
    Nucleic Acids Res; 1978 May; 5(5):1465-78. PubMed ID: 96430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.