These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 10637178)
1. Rate-dependent changes in cell shortening, intracellular Ca(2+) levels and membrane potential in single, isolated rainbow trout (Oncorhynchus mykiss) ventricular myocytes. Harwood CL; Howarth FC; Altringham JD; White E J Exp Biol; 2000 Feb; 203(Pt 3):493-504. PubMed ID: 10637178 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependence of cardiac sarcoplasmic reticulum function in rainbow trout myocytes. Shiels HA; Vornanen M; Farrell AP J Exp Biol; 2002 Dec; 205(Pt 23):3631-9. PubMed ID: 12409489 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature and calcium availability on ventricular myocardium from rainbow trout. Coyne MD; Kim CS; Cameron JS; Gwathmey JK Am J Physiol Regul Integr Comp Physiol; 2000 Jun; 278(6):R1535-44. PubMed ID: 10848521 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms underlying the frequency dependence of contraction and [Ca(2+)](i) transients in mouse ventricular myocytes. Antoons G; Mubagwa K; Nevelsteen I; Sipido KR J Physiol; 2002 Sep; 543(Pt 3):889-98. PubMed ID: 12231646 [TBL] [Abstract][Full Text] [Related]
5. Comparison of sarcoplasmic reticulum calcium content in atrial and ventricular myocytes of three fish species. Haverinen J; Vornanen M Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R1180-7. PubMed ID: 19692664 [TBL] [Abstract][Full Text] [Related]
6. Calcium-induced release of strontium ions from the sarcoplasmic reticulum of rat cardiac ventricular myocytes. Spencer CI; Berlin JR J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):565-78. PubMed ID: 9401965 [TBL] [Abstract][Full Text] [Related]
7. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes. Janczewski AM; Lakatta EG J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810 [TBL] [Abstract][Full Text] [Related]
8. Ca2+ current-mediated regulation of action potential by pacing rate in rat ventricular myocytes. Fauconnier J; Bedut S; Le Guennec JY; Babuty D; Richard S Cardiovasc Res; 2003 Mar; 57(3):670-80. PubMed ID: 12618229 [TBL] [Abstract][Full Text] [Related]
9. Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance. Endoh M Eur J Pharmacol; 2004 Oct; 500(1-3):73-86. PubMed ID: 15464022 [TBL] [Abstract][Full Text] [Related]
10. Na(+)/Ca(2+)-exchange activity regulates contraction and SR Ca(2+) content in rainbow trout atrial myocytes. Hove-Madsen L; Llach A; Tort L Am J Physiol Regul Integr Comp Physiol; 2000 Nov; 279(5):R1856-64. PubMed ID: 11049871 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of human beta2-adrenergic receptors increases gain of excitation-contraction coupling in mouse ventricular myocytes. Grandy SA; Denovan-Wright EM; Ferrier GR; Howlett SE Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H1029-38. PubMed ID: 15155261 [TBL] [Abstract][Full Text] [Related]
12. Alloxan reduces amplitude of ventricular myocyte shortening and intracellular Ca2+ without altering L-type Ca2+ current, sarcoplasmic reticulum Ca2+ content or myofilament sensitivity to Ca2+ in Wistar rats. Salem KA; Qureshi A; Ljubisavijevic M; Oz M; Isaev D; Hussain M; Howarth FC Mol Cell Biochem; 2010 Jul; 340(1-2):115-23. PubMed ID: 20174963 [TBL] [Abstract][Full Text] [Related]
13. Effects of articaine and ropivacaine on calcium handling and contractility in canine ventricular myocardium. Szentandrássy N; Szabó A; Almássy J; Jóna I; Horváth B; Szabó G; Bányász T; Márton I; Nánási PP; Magyar J Eur J Anaesthesiol; 2010 Feb; 27(2):153-61. PubMed ID: 19809324 [TBL] [Abstract][Full Text] [Related]
14. Calcium-dependent modulation of the plateau phase of action potential in isolated ventricular cells of rabbit heart. Papp Z; Peineau N; Szigeti G; Argibay J; Kovács L Acta Physiol Scand; 1999 Oct; 167(2):119-29. PubMed ID: 10571547 [TBL] [Abstract][Full Text] [Related]
15. High [Na+]i in cardiomyocytes from rainbow trout. Birkedal R; Shiels HA Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R861-6. PubMed ID: 17507438 [TBL] [Abstract][Full Text] [Related]
16. Effects of high extracellular [K+] and adrenaline on force development, relaxation and membrane potential in cardiac muscle from freshwater turtle and rainbow trout. Nielsen JS; Gesser H J Exp Biol; 2001 Jan; 204(Pt 2):261-8. PubMed ID: 11136612 [TBL] [Abstract][Full Text] [Related]
17. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. Hüser J; Wang YG; Sheehan KA; Cifuentes F; Lipsius SL; Blatter LA J Physiol; 2000 May; 524 Pt 3(Pt 3):795-806. PubMed ID: 10790159 [TBL] [Abstract][Full Text] [Related]
19. Increases in diastolic [Ca2+] can contribute to positive inotropy in guinea pig ventricular myocytes in the absence of changes in amplitudes of Ca2+ transients. Shutt RH; Ferrier GR; Howlett SE Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1623-34. PubMed ID: 16699070 [TBL] [Abstract][Full Text] [Related]
20. Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. Hussain M; Orchard CH J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):385-402. PubMed ID: 9423181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]