BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 10637329)

  • 1. Stabilities of intrastrand pyrimidine motif DNA and RNA triple helices.
    Hoyne PR; Gacy AM; McMurray CT; Maher LJ
    Nucleic Acids Res; 2000 Feb; 28(3):770-5. PubMed ID: 10637329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Searching genomes for sequences with the potential to form intrastrand triple helices.
    Hoyne PR; Edwards LM; Viari A; Maher LJ
    J Mol Biol; 2000 Sep; 302(4):797-809. PubMed ID: 10993724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of competing DNA structures by thermal gradient gel electrophoresis: from self-association to triple helix formation by (G,A)-containing oligonucleotides.
    Arimondo PB; Garestier T; Hélène C; Sun JS
    Nucleic Acids Res; 2001 Feb; 29(4):E15. PubMed ID: 11160935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides.
    Michel T; Debart F; Heitz F; Vasseur JJ
    Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of stable triplexes between purine RNA and pyrimidine oligodeoxyxylonucleotides.
    Ivanov S; Alekseev Y; Bertrand JR; Malvy C; Gottikh MB
    Nucleic Acids Res; 2003 Jul; 31(14):4256-63. PubMed ID: 12853644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and kinetic effects of N3'-->P5' phosphoramidate modification on pyrimidine motif triplex DNA formation.
    Torigoe H
    Biochemistry; 2001 Jan; 40(4):1063-9. PubMed ID: 11170429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring denaturation behaviour and comparative stability of DNA triple helices using oligonucleotide-gold nanoparticle conjugates.
    Murphy D; Eritja R; Redmond G
    Nucleic Acids Res; 2004 Apr; 32(7):e65. PubMed ID: 15107480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH.
    Torigoe H; Nakagawa O; Imanishi T; Obika S; Sasaki K
    Biochimie; 2012 Apr; 94(4):1032-40. PubMed ID: 22245184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition.
    Xodo L; Alunni-Fabbroni M; Manzini G; Quadrifoglio F
    Nucleic Acids Res; 1994 Aug; 22(16):3322-30. PubMed ID: 8078767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine- and pyrimidine-triple-helix-forming oligonucleotides recognize qualitatively different target sites at the ribosomal DNA locus.
    Maldonado R; Filarsky M; Grummt I; Längst G
    RNA; 2018 Mar; 24(3):371-380. PubMed ID: 29222118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and monitored selection of nucleotide surrogates for binding T:A base pairs in homopurine-homopyrimidine DNA triple helices.
    Mokhir AA; Connors WH; Richert C
    Nucleic Acids Res; 2001 Sep; 29(17):3674-84. PubMed ID: 11522839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct differences in metal ion specificity of RNA and DNA G-quadruplexes.
    Guiset Miserachs H; Donghi D; Börner R; Johannsen S; Sigel RK
    J Biol Inorg Chem; 2016 Dec; 21(8):975-986. PubMed ID: 27704222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding thermodynamics of DNA pyrimidine triplexes with different molecularities.
    Lee HT; Arciniegas S; Marky LA
    J Phys Chem B; 2008 Apr; 112(15):4833-40. PubMed ID: 18358029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplex formation by oligonucleotides containing 5-(1-propynyl)-2'-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting.
    Lacroix L; Lacoste J; Reddoch JF; Mergny JL; Levy DD; Seidman MM; Matteucci MD; Glazer PM
    Biochemistry; 1999 Feb; 38(6):1893-901. PubMed ID: 10026270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines.
    Aviñó A; Frieden M; Morales JC; García de la Torre B; Güimil García R; Azorín F; Gelpí JL; Orozco M; González C; Eritja R
    Nucleic Acids Res; 2002 Jun; 30(12):2609-19. PubMed ID: 12060677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of nucleic acid double helices by homopyrimidine 2', 5'-linked RNA.
    Damha MJ; Noronha A
    Nucleic Acids Res; 1998 Nov; 26(22):5152-6. PubMed ID: 9813104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.