BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10637376)

  • 1. Highlights of semi-synthetic developments from erythromycin A.
    Wu YJ
    Curr Pharm Des; 2000 Jan; 6(2):181-223. PubMed ID: 10637376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant breakthroughs in search for anti-infectious agents derived from erythromycin A.
    Ma X; Ma S
    Curr Med Chem; 2011; 18(13):1993-2015. PubMed ID: 21517774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-synthetic derivatives of erythromycin.
    Kirst HA
    Prog Med Chem; 1993; 30():57-88. PubMed ID: 8303037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New directions for macrolide antibiotics: structural modifications and in vitro activity.
    Kirst HA; Sides GD
    Antimicrob Agents Chemother; 1989 Sep; 33(9):1413-8. PubMed ID: 2684004
    [No Abstract]   [Full Text] [Related]  

  • 5. Preparation of cyclic 2',3'-carbamate derivatives of erythromycin macrolide antibiotics.
    Heggelund A; Undheim K
    Bioorg Med Chem; 2007 May; 15(9):3266-77. PubMed ID: 17337343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and antibacterial activity of acylides (3-O-acyl-erythromycin derivatives): a novel class of macrolide antibiotics.
    Tanikawa T; Asaka T; Kashimura M; Misawa Y; Suzuki K; Sato M; Kameo K; Morimoto S; Nishida A
    J Med Chem; 2001 Nov; 44(24):4027-30. PubMed ID: 11708904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes.
    Milberg P; Eckardt L; Bruns HJ; Biertz J; Ramtin S; Reinsch N; Fleischer D; Kirchhof P; Fabritz L; Breithardt G; Haverkamp W
    J Pharmacol Exp Ther; 2002 Oct; 303(1):218-25. PubMed ID: 12235254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field.
    Topp E; Renaud J; Sumarah M; Sabourin L
    Sci Total Environ; 2016 Aug; 562():136-144. PubMed ID: 27096634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic synthesis of macrolide/ketolide metabolites through a selective N-demethylation reaction.
    Stenmark HG; Brazzale A; Ma Z
    J Org Chem; 2000 Jun; 65(12):3875-6. PubMed ID: 10864780
    [No Abstract]   [Full Text] [Related]  

  • 10. Preparation and in vitro antibacterial activity of 9-O-glycosyloxime derivatives of erythromycin A, a new class of macrolide antibiotics.
    Grandjean C; Lukacs G
    J Antibiot (Tokyo); 1996 Oct; 49(10):1036-43. PubMed ID: 8968398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of macrolide antibiotics on nitric oxide synthase and xanthine oxidase activities, and malondialdehyde level in erythrocyte of the guinea pigs with experimental otitis media with effusion.
    Aktan B; Taysi S; Gümüştekin K; Uçüncü H; Memişoğullari R; Save K; Bakan N
    Pol J Pharmacol; 2003; 55(6):1105-10. PubMed ID: 14730107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on macrolide antibiotics I. Synthesis and antibacterial activity of erythromycin A 9-O-substituted oxime ether derivatives against Mycobacterium avium complex.
    Nishimoto A; Narita K; Ohmoto S; Takahashi Y; Yoshizumi S; Yoshida T; Kado N; Okezaki E; Kato H
    Chem Pharm Bull (Tokyo); 2001 Sep; 49(9):1120-7. PubMed ID: 11558597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A new macrolide antibiotic, clarithromycin--synthesis, structure-activity relationship and metabolism].
    Adachi T; Morimoto S
    Seikagaku; 1990 Oct; 62(10):1260-3. PubMed ID: 2150202
    [No Abstract]   [Full Text] [Related]  

  • 14. The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin.
    Bahal N; Nahata MC
    Ann Pharmacother; 1992 Jan; 26(1):46-55. PubMed ID: 1318761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and antibacterial activities of novel 12-O-methylerythromycin A derivatives.
    Ku YY; Riley D; Grieme T; Nilius A
    J Antibiot (Tokyo); 1999 Oct; 52(10):908-12. PubMed ID: 10604761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative tolerability of erythromycin and newer macrolide antibacterials in paediatric patients.
    Principi N; Esposito S
    Drug Saf; 1999 Jan; 20(1):25-41. PubMed ID: 9935275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of three acid-stable azalide compounds, L-701,677, L-708,299 and L-708,365 compared to erythromycin, azithromycin and clarithromycin.
    Gill CJ; Abruzzo GK; Flattery AM; Smith JG; Jackson J; Kong L; Wilkening R; Shankaran K; Kropp H; Bartizal K
    J Antibiot (Tokyo); 1995 Oct; 48(10):1141-7. PubMed ID: 7490222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clarithromycin and azithromycin: new macrolide antibiotics.
    Piscitelli SC; Danziger LH; Rodvold KA
    Clin Pharm; 1992 Feb; 11(2):137-52. PubMed ID: 1312921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin.
    Matic V; Kosowska K; Bozdogan B; Kelly LM; Smith K; Ednie LM; Lin G; Credito KL; Clark CL; McGhee P; Pankuch GA; Jacobs MR; Appelbaum PC
    Antimicrob Agents Chemother; 2004 Nov; 48(11):4103-12. PubMed ID: 15504828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and antibacterial activity of 9-oxime ether non-ketolides, and novel binding mode of alkylides with bacterial rRNA.
    Liang JH; Lv W; Li XL; An K; Cushman M; Wang H; Xu YC
    Bioorg Med Chem Lett; 2013 Mar; 23(5):1387-93. PubMed ID: 23375796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.