These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10637660)

  • 21. Biosynthesis of plant cell wall polysaccharides.
    Gibeaut DM; Carpita NC
    FASEB J; 1994 Sep; 8(12):904-15. PubMed ID: 8088456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The making of the architecture of the plant cell wall: how cells exploit geometry.
    Emons AM; Mulder BM
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7215-9. PubMed ID: 9618565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arrangement of cellulose microfibrils in walls of elongating parenchyma cells.
    SETTERFIELD G; BAYLEY ST
    J Biophys Biochem Cytol; 1958 Jul; 4(4):377-82. PubMed ID: 13563544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contributions of the mechanical properties of major structural polysaccharides to the stiffness of a cell wall network model.
    Yi H; Puri VM
    Am J Bot; 2014 Feb; 101(2):244-54. PubMed ID: 24491345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feeding the Walls: How Does Nutrient Availability Regulate Cell Wall Composition?
    Ogden M; Hoefgen R; Roessner U; Persson S; Khan GA
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30201905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface architecture of the plant cell: biogenesis of the cell wall, with special emphasis on the role of the plasma membrane in cellulose biosynthesis.
    Montezinos D; Brown M
    J Supramol Struct; 1976; 5(3):277-90. PubMed ID: 1024121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Making parallel lines meet: transferring information from microtubules to extracellular matrix.
    Baskin TI; Gu Y
    Cell Adh Migr; 2012; 6(5):404-8. PubMed ID: 22902763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls.
    Ye D; Kiemle SN; Rongpipi S; Wang X; Wang C; Cosgrove DJ; Gomez EW; Gomez ED
    Sci Rep; 2018 Aug; 8(1):12449. PubMed ID: 30127533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dynamical model for plant cell wall architecture formation.
    Mulder BM; Emons AM
    J Math Biol; 2001 Mar; 42(3):261-89. PubMed ID: 11315315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The parallel lives of microtubules and cellulose microfibrils.
    Lloyd C; Chan J
    Curr Opin Plant Biol; 2008 Dec; 11(6):641-6. PubMed ID: 18977684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.
    Zhong R; Ye ZH
    Plant Cell Physiol; 2015 Feb; 56(2):195-214. PubMed ID: 25294860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhomogeneity of Cellulose Microfibril Assembly in Plant Cell Walls Revealed with Sum Frequency Generation Microscopy.
    Huang S; Makarem M; Kiemle SN; Hamedi H; Sau M; Cosgrove DJ; Kim SH
    J Phys Chem B; 2018 May; 122(19):5006-5019. PubMed ID: 29697980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.
    Wang T; Hong M
    J Exp Bot; 2016 Jan; 67(2):503-14. PubMed ID: 26355148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls.
    Huang S; Makarem M; Kiemle SN; Zheng Y; He X; Ye D; Gomez EW; Gomez ED; Cosgrove DJ; Kim SH
    Carbohydr Polym; 2018 Oct; 197():337-348. PubMed ID: 30007621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation.
    Roudier F; Fernandez AG; Fujita M; Himmelspach R; Borner GH; Schindelman G; Song S; Baskin TI; Dupree P; Wasteneys GO; Benfey PN
    Plant Cell; 2005 Jun; 17(6):1749-63. PubMed ID: 15849274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of cellulose microfibrils in primary cell walls from collenchyma.
    Thomas LH; Forsyth VT; Sturcová A; Kennedy CJ; May RP; Altaner CM; Apperley DC; Wess TJ; Jarvis MC
    Plant Physiol; 2013 Jan; 161(1):465-76. PubMed ID: 23175754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical modeling and structural analysis of the primary plant cell wall.
    Geitmann A
    Curr Opin Plant Biol; 2010 Dec; 13(6):693-9. PubMed ID: 20971032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.