BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10637766)

  • 1. Thiolation of low-Mr phosphotyrosine protein phosphatase by thiol-disulfides.
    Degl'Innocenti D; Caselli A; Rosati F; Marzocchini R; Manao G; Camici G; Ramponi G
    IUBMB Life; 1999 Nov; 48(5):505-11. PubMed ID: 10637766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of sulfhydryl groups of the catalytic subunits of rabbit skeletal muscle protein phosphatases 1 and 2A.
    Nemani R; Lee EY
    Arch Biochem Biophys; 1993 Jan; 300(1):24-9. PubMed ID: 8380964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of PTP1B via glutathionylation of the active site cysteine 215.
    Barrett WC; DeGnore JP; König S; Fales HM; Keng YF; Zhang ZY; Yim MB; Chock PB
    Biochemistry; 1999 May; 38(20):6699-705. PubMed ID: 10350489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite.
    Takakura K; Beckman JS; MacMillan-Crow LA; Crow JP
    Arch Biochem Biophys; 1999 Sep; 369(2):197-207. PubMed ID: 10486138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of a soybean tyrosine-specific protein phosphatase.
    Dixon DP; Fordham-Skelton AP; Edwards R
    Biochemistry; 2005 May; 44(21):7696-703. PubMed ID: 15909984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of activation of protein phosphatase 1 on sulfhydryl reactivity.
    Chu Y; Lee EY; Reimann EM; Wilson SE; Schlender KK
    Arch Biochem Biophys; 1996 Oct; 334(1):83-8. PubMed ID: 8837742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of inactivation of glutamate decarboxylase by cysteine-specific reagents.
    McCormick SJ; Tunnicliff G
    Acta Biochim Pol; 2001; 48(2):573-8. PubMed ID: 11732626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion.
    Kim JH; Cho H; Ryu SE; Choi MU
    Arch Biochem Biophys; 2000 Oct; 382(1):72-80. PubMed ID: 11051099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase.
    Tiedge M; Richter T; Lenzen S
    Arch Biochem Biophys; 2000 Mar; 375(2):251-60. PubMed ID: 10700381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones.
    Wang Q; Dubé D; Friesen RW; LeRiche TG; Bateman KP; Trimble L; Sanghara J; Pollex R; Ramachandran C; Gresser MJ; Huang Z
    Biochemistry; 2004 Apr; 43(14):4294-303. PubMed ID: 15065873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of an essential cysteine residue in pyridoxal phosphatase from human erythrocytes.
    Gao G; Fonda ML
    J Biol Chem; 1994 Mar; 269(11):8234-9. PubMed ID: 8132548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of the sulfhydryl groups of phosphorylase kinase].
    Shur SA; Skolysheva LK; Vul'fson PL
    Biokhimiia; 1983 Nov; 48(11):1831-7. PubMed ID: 6661455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional consequences of inactivation of human glutathione S-transferase P1-1 mediated by the catechol metabolite of equine estrogens, 4-hydroxyequilenin.
    Chang M; Shin YG; van Breemen RB; Blond SY; Bolton JL
    Biochemistry; 2001 Apr; 40(15):4811-20. PubMed ID: 11294649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel invertase from a thermophilic fungus Thermomyces lanuginosus: its requirement of thiol and protein for activation.
    Chaudhuri A; Maheshwari R
    Arch Biochem Biophys; 1996 Mar; 327(1):98-106. PubMed ID: 8615701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa.
    Seligman J; Zipser Y; Kosower NS
    Biol Reprod; 2004 Sep; 71(3):1009-15. PubMed ID: 15151929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.