These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1064035)

  • 1. Fluidity in mitochondrial membranes: thermotropic lateral translational motion of intramembrane particles.
    Höchli M; Hackenbrock CR
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1636-40. PubMed ID: 1064035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric and freeze fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes.
    Hackenbrock CR; Höchli M; Chau RM
    Biochim Biophys Acta; 1976 Dec; 455(2):466-84. PubMed ID: 999923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermotropic lateral translational motion of intramembrane particles in the inner mitochondrial membrane and its inhibition by artificial peripheral proteins.
    Höchli M; Hackenbrock CR
    J Cell Biol; 1977 Feb; 72(2):278-91. PubMed ID: 833199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane.
    Höchli M; Hackenbrock CR
    Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1236-40. PubMed ID: 220611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral phase separations and structural integrity of the inner membrane of rat-liver mitochondria. Effect of compression. Implications in the centrifugation of these organelles.
    Wattiaux-De Coninck S; Dubois F; Wattiaux R
    Biochim Biophys Acta; 1977 Dec; 471(3):421-35. PubMed ID: 921991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization.
    Sowers AE; Hackenbrock CR
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6246-50. PubMed ID: 6947228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of phospholipids in the rat liver inner mitochondrial membrane.
    Cullis PR; de Kruijff B; Hope MJ; Nayar R; Rietveld A; Verkleij AJ
    Biochim Biophys Acta; 1980 Aug; 600(3):625-35. PubMed ID: 7407135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imipramine and lipid phase transition in inner mitochondrial membrane.
    Delmelle M; Coninck SW; Dubois F; Wattiaux R
    Biochim Biophys Acta; 1980 Aug; 600(3):791-5. PubMed ID: 6250603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in density and size distribution of intramembrane particles in the inner membrane of mitochondria from chloramphenicol-fed mice.
    Sowers AE; Hackenbrock CR
    Eur J Cell Biol; 1981 Apr; 24(1):101-7. PubMed ID: 7238528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealed by cholesterol incorporation.
    Schneider H; Höchli M; Hackenbrock CR
    J Cell Biol; 1982 Aug; 94(2):387-93. PubMed ID: 7107704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in freeze-fractured mitochondrial membranes correlated to their energetic state. Dynamic interactions of the boundary membranes.
    Knoll G; Brdiczka D
    Biochim Biophys Acta; 1983 Aug; 733(1):102-10. PubMed ID: 6882749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of compression on rat-liver mitochondrial membranes. A biochemical and morphological study.
    Wattiaux R; Wattiaux-De Coninck S; Delmelle M; Dubois F
    Acta Histochem Suppl; 1981; 23():225-31. PubMed ID: 6784170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion of liposomes with mitochondrial inner membranes.
    Schneider H; Lemasters JJ; Höchli M; Hackenbrock CR
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):442-6. PubMed ID: 6928637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence.
    Kitajima Y; Thompson GA
    J Cell Biol; 1977 Mar; 72(3):744-55. PubMed ID: 402370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of membrane structure facts and artefacts produced during freeze-fracturing.
    Bullivant S
    J Microsc; 1977 Sep; 111(1):101-16. PubMed ID: 606830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible role of non-bilayer lipids in the structure of mitochondria. A freeze-fracture electron microscopy study.
    Van Venetië R; Verkleij AJ
    Biochim Biophys Acta; 1982 Nov; 692(3):397-405. PubMed ID: 6293569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-mediated fusion to produce ultra large osmotically active mitochondrial inner membranes of controlled protein density.
    Chazotte B; Wu ES; Höchli M; Hackenbrock CR
    Biochim Biophys Acta; 1985 Aug; 818(1):87-95. PubMed ID: 4016116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-fracture study of photoreceptor outer segments and pigment epithelium in dystrophic and normal retinas.
    McLaughlin BJ; Boykins LG
    J Comp Neurol; 1981 Jul; 199(4):553-67. PubMed ID: 7276240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of intramembranous particles in the membranous system of rat liver cells at different stages of development and aging.
    Goldhahn A; Robenek H; Fleischer M; Themann H
    J Morphol; 1981 Nov; 170(2):133-46. PubMed ID: 7299824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-fracture study of heart mitochondria in the condensed or orthodox state.
    Hertsens RC; Jacob WA
    Biochim Biophys Acta; 1987 Dec; 894(3):507-14. PubMed ID: 3689780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.