These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 10641651)
1. Vibration characteristics of bone conducted sound in vitro. Stenfelt S; Håkansson B; Tjellström A J Acoust Soc Am; 2000 Jan; 107(1):422-31. PubMed ID: 10641651 [TBL] [Abstract][Full Text] [Related]
2. Transmission properties of bone conducted sound: measurements in cadaver heads. Stenfelt S; Goode RL J Acoust Soc Am; 2005 Oct; 118(4):2373-91. PubMed ID: 16266160 [TBL] [Abstract][Full Text] [Related]
3. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration. Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594 [TBL] [Abstract][Full Text] [Related]
4. Transcranial attenuation of bone-conducted sound when stimulation is at the mastoid and at the bone conduction hearing aid position. Stenfelt S Otol Neurotol; 2012 Feb; 33(2):105-14. PubMed ID: 22193619 [TBL] [Abstract][Full Text] [Related]
5. Sound wave propagation on the human skull surface with bone conduction stimulation. Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568 [TBL] [Abstract][Full Text] [Related]
6. Model predictions for bone conduction perception in the human. Stenfelt S Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096 [TBL] [Abstract][Full Text] [Related]
7. Interaction between osseous and non-osseous vibratory stimulation of the human cadaveric head. Sim JH; Dobrev I; Gerig R; Pfiffner F; Stenfelt S; Huber AM; Röösli C Hear Res; 2016 Oct; 340():153-160. PubMed ID: 26807795 [TBL] [Abstract][Full Text] [Related]
8. Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs. Zhao M; Fridberger A; Stenfelt S Sci Rep; 2021 Feb; 11(1):2855. PubMed ID: 33536482 [TBL] [Abstract][Full Text] [Related]
9. Transmission of bone-conducted sound in the human skull measured by cochlear vibrations. Eeg-Olofsson M; Stenfelt S; Tjellström A; Granström G Int J Audiol; 2008 Dec; 47(12):761-9. PubMed ID: 19085400 [TBL] [Abstract][Full Text] [Related]
10. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument. Ghoncheh M; Lilli G; Lenarz T; Maier H Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102 [TBL] [Abstract][Full Text] [Related]
11. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure. Reinfeldt S; Stenfelt S; Håkansson B Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311 [TBL] [Abstract][Full Text] [Related]
12. Examination of bone-conducted transmission from sound field excitation measured by thresholds, ear-canal sound pressure, and skull vibrations. Reinfeldt S; Stenfelt S; Good T; Håkansson B J Acoust Soc Am; 2007 Mar; 121(3):1576-87. PubMed ID: 17407895 [TBL] [Abstract][Full Text] [Related]
13. Bone-conducted auditory brainstem-evoked responses and skull vibratory velocity measurement in rats at frequencies of 0.5-30 kHz with a new giant magnetostrictive bone conduction transducer. Sakai Y; Karino S; Kaga K Acta Otolaryngol; 2006 Sep; 126(9):926-33. PubMed ID: 16864489 [TBL] [Abstract][Full Text] [Related]
14. Intracochlear pressure and temporal bone motion interaction under bone conduction stimulation. Dobrev I; Pfiffner F; Röösli C Hear Res; 2023 Aug; 435():108818. PubMed ID: 37267833 [TBL] [Abstract][Full Text] [Related]
15. Acoustic and physiologic aspects of bone conduction hearing. Stenfelt S Adv Otorhinolaryngol; 2011; 71():10-21. PubMed ID: 21389700 [TBL] [Abstract][Full Text] [Related]
16. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch. Chhan D; Bowers P; McKinnon ML; Rosowski JJ Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of direct promontory stimulation by bone conduction: A preliminary study of frequency-response characteristics in cats. Shi YX; Ren LJ; Yang L; Zhang TY; Xie YZ; Dai PD Hear Res; 2019 Jul; 378():101-107. PubMed ID: 30773325 [TBL] [Abstract][Full Text] [Related]
18. Response of human skull to bone-conducted sound in the audiometric-ultrasonic range. Cai Z; Richards DG; Lenhardt ML; Madsen AG Int Tinnitus J; 2002; 8(1):3-8. PubMed ID: 14763228 [TBL] [Abstract][Full Text] [Related]
19. Transcranial attenuation in bone conduction stimulation. Röösli C; Dobrev I; Pfiffner F Hear Res; 2022 Jun; 419():108318. PubMed ID: 34334219 [TBL] [Abstract][Full Text] [Related]
20. Resonance frequencies of the human skull in vivo. Håkansson B; Brandt A; Carlsson P; Tjellström A J Acoust Soc Am; 1994 Mar; 95(3):1474-81. PubMed ID: 8176050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]