These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 10642179)

  • 41. Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains.
    Kim J; Struhl K
    Nucleic Acids Res; 1995 Jul; 23(13):2531-7. PubMed ID: 7630732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain.
    McAfee JG; Shahied-Milam L; Soltaninassab SR; LeStourgeon WM
    RNA; 1996 Nov; 2(11):1139-52. PubMed ID: 8903344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of three residues in the basic regions of the bZIP proteins GCN4, C/EBP and TAF-1 that are involved in specific DNA binding.
    Suckow M; von Wilcken-Bergmann B; Müller-Hill B
    EMBO J; 1993 Mar; 12(3):1193-200. PubMed ID: 8458331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subdomain folding of the coiled coil leucine zipper from the bZIP transcriptional activator GCN4.
    Lumb KJ; Carr CM; Kim PS
    Biochemistry; 1994 Jun; 33(23):7361-7. PubMed ID: 8003501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of helix stabilizing residues in GCN4 basic region folding and DNA binding.
    Hollenbeck JJ; McClain DL; Oakley MG
    Protein Sci; 2002 Nov; 11(11):2740-7. PubMed ID: 12381856
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reflections on apparent DNA bending by charge variants of bZIP proteins.
    Hardwidge PR; Parkhurst KM; Parkhurst LJ; Maher LJ
    Biopolymers; 2003 May; 69(1):110-7. PubMed ID: 12717726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Certain bZIP peptides bind DNA sequentially as monomers and dimerize on the DNA.
    Metallo SJ; Schepartz A
    Nat Struct Biol; 1997 Feb; 4(2):115-7. PubMed ID: 9033590
    [No Abstract]   [Full Text] [Related]  

  • 48. An altered specificity mutation in the lambda repressor induces global reorganization of the protein-DNA interface.
    Benevides JM; Weiss MA; Thomas GJ
    J Biol Chem; 1994 Apr; 269(14):10869-78. PubMed ID: 8144673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamic signature of GCN4-bZIP binding to DNA indicates the role of water in discriminating between the AP-1 and ATF/CREB sites.
    Dragan AI; Frank L; Liu Y; Makeyeva EN; Crane-Robinson C; Privalov PL
    J Mol Biol; 2004 Oct; 343(4):865-78. PubMed ID: 15476806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solution structure of the DNA-binding domain of the yeast transcriptional activator protein GCN4.
    Saudek V; Pastore A; Castiglione Morelli MA; Frank R; Gausepohl H; Gibson T; Weih F; Roesch P
    Protein Eng; 1990 Oct; 4(1):3-10. PubMed ID: 2290831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions of coiled coils in transcription factors: where is the specificity?
    Baxevanis AD; Vinson CR
    Curr Opin Genet Dev; 1993 Apr; 3(2):278-85. PubMed ID: 8504253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA binding by single HMG box model proteins.
    Xin H; Taudte S; Kallenbach NR; Limbach MP; Zitomer RS
    Nucleic Acids Res; 2000 Oct; 28(20):4044-50. PubMed ID: 11024186
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes.
    Albani D; Hammond-Kosack MC; Smith C; Conlan S; Colot V; Holdsworth M; Bevan MW
    Plant Cell; 1997 Feb; 9(2):171-84. PubMed ID: 9061949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control.
    Brownlie P; Ceska T; Lamers M; Romier C; Stier G; Teo H; Suck D
    Structure; 1997 Apr; 5(4):509-20. PubMed ID: 9115440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Altered specificity of DNA-binding proteins with transition metal dimerization domains.
    Cuenoud B; Schepartz A
    Science; 1993 Jan; 259(5094):510-3. PubMed ID: 8424173
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-hybrid system for characterization of protein-protein interactions in E. coli.
    Hays LB; Chen YS; Hu JC
    Biotechniques; 2000 Aug; 29(2):288-90, 292, 294 passim. PubMed ID: 10948430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence-specific DNA binding by covalently constrained peptide dimers of the basic leucine zipper protein GCN4.
    Okagami M; Ueno M; Makino K; Shimomura M; Saito I; Morii T; Sugiura Y
    Bioorg Med Chem; 1995 Jun; 3(6):777-84. PubMed ID: 7582955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The leucine zipper symmetrically positions the adjacent basic regions for specific DNA binding.
    Pu WT; Struhl K
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6901-5. PubMed ID: 1871104
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of an amino acid-base contact in the GCN4-DNA complex by bromouracil-mediated photocrosslinking.
    Blatter EE; Ebright YW; Ebright RH
    Nature; 1992 Oct; 359(6396):650-2. PubMed ID: 1406998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA.
    Metallo SJ; Paolella DN; Schepartz A
    Nucleic Acids Res; 1997 Aug; 25(15):2967-72. PubMed ID: 9224594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.