BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10642331)

  • 1. Inhibition of cADP-ribose formation produces vasodilation in bovine coronary arteries.
    Geiger J; Zou AP; Campbell WB; Li PL
    Hypertension; 2000 Jan; 35(1 Pt 2):397-402. PubMed ID: 10642331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic ADP-ribose contributes to contraction and Ca2+ release by M1 muscarinic receptor activation in coronary arterial smooth muscle.
    Ge ZD; Zhang DX; Chen YF; Yi FX; Zou AP; Campbell WB; Li PL
    J Vasc Res; 2003; 40(1):28-36. PubMed ID: 12644723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide inhibits Ca(2+) mobilization through cADP-ribose signaling in coronary arterial smooth muscle cells.
    Yu JZ; Zhang DX; Zou AP; Campbell WB; Li PL
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H873-81. PubMed ID: 10993745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle.
    Zhang AY; Yi F; Teggatz EG; Zou AP; Li PL
    Microvasc Res; 2004 Mar; 67(2):159-67. PubMed ID: 15020207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of KCa-channel activity by cyclic ADP-ribose and ADP-ribose in coronary arterial smooth muscle.
    Li PL; Zou AP; Campbell WB
    Am J Physiol; 1998 Sep; 275(3):H1002-10. PubMed ID: 9724306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic ADP ribose-mediated Ca2+ signaling in mediating endothelial nitric oxide production in bovine coronary arteries.
    Zhang G; Teggatz EG; Zhang AY; Koeberl MJ; Yi F; Chen L; Li PL
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1172-81. PubMed ID: 16243917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle.
    Li PL; Tang WX; Valdivia HH; Zou AP; Campbell WB
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H208-15. PubMed ID: 11123235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine diphosphate ribose dilates bovine coronary small arteries through apyrase- and 5'-nucleotidase-mediated metabolism.
    Zhang DX; Zou AP; Li PL
    J Vasc Res; 2001; 38(1):64-72. PubMed ID: 11173996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism and actions of ADP-riboses in coronary arterial smooth muscle.
    Li P; Zou AP; Campbell WB
    Adv Exp Med Biol; 1997; 419():437-41. PubMed ID: 9193686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasodilation by the calcium-mobilizing messenger cyclic ADP-ribose.
    Boittin FX; Dipp M; Kinnear NP; Galione A; Evans AM
    J Biol Chem; 2003 Mar; 278(11):9602-8. PubMed ID: 12486132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries.
    Teggatz EG; Zhang G; Zhang AY; Yi F; Li N; Zou AP; Li PL
    Microvasc Res; 2005 Jul; 70(1-2):65-75. PubMed ID: 16095628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and actions of cyclic ADP-ribose in renal microvessels.
    Li N; Teggatz EG; Li PL; Allaire R; Zou AP
    Microvasc Res; 2000 Sep; 60(2):149-59. PubMed ID: 10964589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108-15 neuronal cells.
    Hashii M; Minabe Y; Higashida H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):207-15. PubMed ID: 10620496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle.
    Franco L; Bruzzone S; Song P; Guida L; Zocchi E; Walseth TF; Crimi E; Usai C; De Flora A; Brusasco V
    Am J Physiol Lung Cell Mol Physiol; 2001 Jan; 280(1):L98-L106. PubMed ID: 11133499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of ADP-ribose in 11,12-EET-induced activation of K(Ca) channels in coronary arterial smooth muscle cells.
    Li PL; Zhang DX; Ge ZD; Campbell WB
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1229-36. PubMed ID: 11893556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in bovine rod outer segments.
    Panfoli I; Ravera S; Fabiano A; Magrassi R; Diaspro A; Morelli A; Pepe IM
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):978-84. PubMed ID: 17325135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of CGRP-induced relaxation in rat intramural coronary arteries.
    Sheykhzade M; Berg Nyborg NC
    Br J Pharmacol; 2001 Mar; 132(6):1235-46. PubMed ID: 11250874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selected contribution: effect of volatile anesthetics on cADP-ribose-induced Ca(2+) release system.
    Chini EN
    J Appl Physiol (1985); 2001 Jul; 91(1):516-21; discussion 504-5. PubMed ID: 11408471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cADP-ribose/ryanodine channel/Ca2+-release signal transduction pathway in mesangial cells.
    Yusufi AN; Cheng J; Thompson MA; Dousa TP; Warner GM; Walker HJ; Grande JP
    Am J Physiol Renal Physiol; 2001 Jul; 281(1):F91-F102. PubMed ID: 11399650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin-1-induced contraction of mesenteric small arteries is mediated by ryanodine receptor Ca2+ channels and cyclic ADP-ribose.
    Giulumian AD; Meszaros LG; Fuchs LC
    J Cardiovasc Pharmacol; 2000 Dec; 36(6):758-63. PubMed ID: 11117376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.