BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 10642506)

  • 41. Localization of pipecolic acid metabolism in rat liver peroxisomes: probable explanation for hyperpipecolataemia in Zellweger syndrome.
    Trijbels JM; Monnens LA; Melis G; van den Broekvan Essen M; Bruckwilder M
    J Inherit Metab Dis; 1987; 10(2):128-34. PubMed ID: 3116331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional expression of L-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine.
    Tani Y; Miyake R; Yukami R; Dekishima Y; China H; Saito S; Kawabata H; Mihara H
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5045-54. PubMed ID: 25547835
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase.
    Fransen M; Van Veldhoven PP; Subramani S
    Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):561-8. PubMed ID: 10333503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical aspects of amine oxidation by flavoprotein enzymes.
    Scrutton NS
    Nat Prod Rep; 2004 Dec; 21(6):722-30. PubMed ID: 15565251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning, sequencing and heterologous expression of the gene for lupanine hydroxylase, a quinocytochrome c from a Pseudomonas sp.
    Hopper DJ; Kaderbhai MA; Marriott SA; Young M; Rogozinski J
    Biochem J; 2002 Oct; 367(Pt 2):483-9. PubMed ID: 12119046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity.
    Ilari A; Bonamore A; Franceschini S; Fiorillo A; Boffi A; Colotti G
    Proteins; 2008 Jun; 71(4):2065-75. PubMed ID: 18186483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. L-pipecolic acid oxidation in rat: subcellular localization and developmental study.
    Rao VV; Tsai MJ; Pan X; Chang YF
    Biochim Biophys Acta; 1993 Jun; 1164(1):29-35. PubMed ID: 8518295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sarcosine oxidase contains a novel covalently bound FMN.
    Willie A; Edmondson DE; Jorns MS
    Biochemistry; 1996 Apr; 35(16):5292-9. PubMed ID: 8611516
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monomeric sarcosine oxidase: 2. Kinetic studies with sarcosine, alternate substrates, and a substrate analogue.
    Wagner MA; Jorns MS
    Biochemistry; 2000 Aug; 39(30):8825-9. PubMed ID: 10913293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peroxisomal amine oxidase of Hansenula polymorpha does not require its SRL-containing C-terminal sequence for targeting.
    Faber KN; Haima P; de Hoop MJ; Harder W; Veenhuis M; Ab G
    Yeast; 1993 Apr; 9(4):331-8. PubMed ID: 8511963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genotype-phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines.
    Ebberink MS; Mooyer PA; Koster J; Dekker CJ; Eyskens FJ; Dionisi-Vici C; Clayton PT; Barth PG; Wanders RJ; Waterham HR
    Hum Mutat; 2009 Jan; 30(1):93-8. PubMed ID: 18712838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Horizontal gene transfer involved in the convergent evolution of the plasmid-encoded enantioselective 6-hydroxynicotine oxidases.
    Schenk S; Decker K
    J Mol Evol; 1999 Feb; 48(2):178-86. PubMed ID: 9929386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Folate utilization by monomeric versus heterotetrameric sarcosine oxidases.
    Wagner MA; Schuman Jorns M
    Arch Biochem Biophys; 1997 Jun; 342(1):176-81. PubMed ID: 9185627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular cloning of N-methylputrescine oxidase from tobacco.
    Katoh A; Shoji T; Hashimoto T
    Plant Cell Physiol; 2007 Mar; 48(3):550-4. PubMed ID: 17283012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A barley polyamine oxidase isoform with distinct structural features and subcellular localization.
    Cervelli M; Cona A; Angelini R; Polticelli F; Federico R; Mariottini P
    Eur J Biochem; 2001 Jul; 268(13):3816-30. PubMed ID: 11432750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Translation initiation factor eIF-5A from Plasmodium falciparum.
    Molitor IM; Knöbel S; Dang C; Spielmann T; Alléra A; König GM
    Mol Biochem Parasitol; 2004 Sep; 137(1):65-74. PubMed ID: 15279952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism-based inhibition of L-pipecolate oxidase by 4,5-dehydro-L-pipecolic acid.
    Zabriskie TM
    J Med Chem; 1996 Aug; 39(16):3046-8. PubMed ID: 8759625
    [No Abstract]   [Full Text] [Related]  

  • 58. Maize polyamine oxidase: primary structure from protein and cDNA sequencing.
    Tavladoraki P; Schininà ME; Cecconi F; Di Agostino S; Manera F; Rea G; Mariottini P; Federico R; Angelini R
    FEBS Lett; 1998 Apr; 426(1):62-6. PubMed ID: 9598979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reinvestigation of trihydroxycholestanoic acidemia reveals a peroxisome biogenesis disorder.
    Gootjes J; Skovby F; Christensen E; Wanders RJ; Ferdinandusse S
    Neurology; 2004 Jun; 62(11):2077-81. PubMed ID: 15184617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana.
    Kamada-Nobusada T; Hayashi M; Fukazawa M; Sakakibara H; Nishimura M
    Plant Cell Physiol; 2008 Sep; 49(9):1272-82. PubMed ID: 18703589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.