BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 10642515)

  • 1. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6.
    Ellis SW; Hayhurst GP; Lightfoot T; Smith G; Harlow J; Rowland-Yeo K; Larsson C; Mahling J; Lim CK; Wolf CR; Blackburn MG; Lennard MS; Tucker GT
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of phenylalanine-481 substitutions on the catalytic activity of cytochrome P450 2D6.
    Hayhurst GP; Harlow J; Chowdry J; Gross E; Hilton E; Lennard MS; Tucker GT; Ellis SW
    Biochem J; 2001 Apr; 355(Pt 2):373-9. PubMed ID: 11284724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes.
    Otton SV; Crewe HK; Lennard MS; Tucker GT; Woods HF
    J Pharmacol Exp Ther; 1988 Oct; 247(1):242-7. PubMed ID: 3171974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of phenylalanine 120 on cytochrome P450 2D6 catalytic selectivity and regiospecificity: crucial role in 7-methoxy-4-(aminomethyl)-coumarin metabolism.
    Keizers PH; Lussenburg BM; de Graaf C; Mentink LM; Vermeulen NP; Commandeur JN
    Biochem Pharmacol; 2004 Dec; 68(11):2263-71. PubMed ID: 15498516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in enantioselectivity in bufuralol 1''-hydroxylation by the substitution of phenylalanine-120 by alanine in cytochrome P450 2D6.
    Masuda K; Tamagake K; Okuda Y; Torigoe F; Tsuzuki D; Isobe T; Hichiya H; Hanioka N; Yamamoto S; Narimatsu S
    Chirality; 2005 Jan; 17(1):37-43. PubMed ID: 15526337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of CYP2D6.31 variant: homology modeling suggests possible disruption of redox partner interaction by Arg440His substitution.
    Allorge D; Bréant D; Harlow J; Chowdry J; Lo-Guidice JM; Chevalier D; Cauffiez C; Lhermitte M; Blaney FE; Tucker GT; Broly F; Ellis SW
    Proteins; 2005 May; 59(2):339-46. PubMed ID: 15726636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cytochrome P450 2D6: structure-activity studies using a series of quinidine and quinine analogues.
    Hutzler JM; Walker GS; Wienkers LC
    Chem Res Toxicol; 2003 Apr; 16(4):450-9. PubMed ID: 12703961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite.
    Flanagan JU; Maréchal JD; Ward R; Kemp CA; McLaughlin LA; Sutcliffe MJ; Roberts GC; Paine MJ; Wolf CR
    Biochem J; 2004 Jun; 380(Pt 2):353-60. PubMed ID: 14992686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of phenylalanine 483 in cytochrome P450 2D6 is strongly substrate dependent.
    Lussenburg BM; Keizers PH; de Graaf C; Hidestrand M; Ingelman-Sundberg M; Vermeulen NP; Commandeur JN
    Biochem Pharmacol; 2005 Oct; 70(8):1253-61. PubMed ID: 16135359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of glutamic acid 216 in cytochrome P450 2D6 substrate binding and catalysis.
    Guengerich FP; Hanna IH; Martin MV; Gillam EM
    Biochemistry; 2003 Feb; 42(5):1245-53. PubMed ID: 12564927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic kinetics of pseudoracemic propranolol in human liver microsomes. Enantioselectivity and quinidine inhibition.
    Marathe PH; Shen DD; Nelson WL
    Drug Metab Dispos; 1994; 22(2):237-47. PubMed ID: 8013280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol.
    Ellis SW; Rowland K; Ackland MJ; Rekka E; Simula AP; Lennard MS; Wolf CR; Tucker GT
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):647-54. PubMed ID: 8687412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regio- and stereoselective oxidation of propranolol enantiomers by human CYP2D6, cynomolgus monkey CYP2D17 and marmoset CYP2D19.
    Narimatsu S; Nakata T; Shimizudani T; Nagaoka K; Nakura H; Masuda K; Katsu T; Koeda A; Naito S; Yamano S; Miyata A; Hanioka N
    Chem Biol Interact; 2011 Feb; 189(3):146-52. PubMed ID: 21184751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS
    Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for enantiomer binding and separation of a common beta-blocker: crystal structure of cellobiohydrolase Cel7A with bound (S)-propranolol at 1.9 A resolution.
    Ståhlberg J; Henriksson H; Divne C; Isaksson R; Pettersson G; Johansson G; Jones TA
    J Mol Biol; 2001 Jan; 305(1):79-93. PubMed ID: 11114249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of phenylalanine at position 120 and glutamic acid at position 222 in the oxidation of chiral substrates by cytochrome P450 2D6.
    Masuda K; Tamagake K; Katsu T; Torigoe F; Saito K; Hanioka N; Yamano S; Yamamoto S; Narimatsu S
    Chirality; 2006 Feb; 18(3):167-76. PubMed ID: 16432914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H
    Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6.
    Jones BC; Hyland R; Ackland M; Tyman CA; Smith DA
    Drug Metab Dispos; 1998 Sep; 26(9):875-82. PubMed ID: 9733666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the enantioselective oxidative metabolism of metoprolol by verapamil in human liver microsomes.
    Kim M; Shen DD; Eddy AC; Nelson WL; Roskos LK
    Drug Metab Dispos; 1993; 21(2):309-17. PubMed ID: 8097702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.