These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 10642719)
1. Influence of segmental spinal cord perfusion on intrathecal oxygen tension during experimental thoracic aortic crossclamping. Hellberg A; Koga I; Christiansson L; Stiernström H; Wiklund L; Bergqvist D; Karacagil S J Vasc Surg; 2000 Jan; 31(1 Pt 1):164-70. PubMed ID: 10642719 [TBL] [Abstract][Full Text] [Related]
2. A new method of intrathecal PO2, PCO2, and pH measurements for continuous monitoring of spinal cord ischemia during thoracic aortic clamping in pigs. Christiansson L; Hellberg A; Koga I; Thelin S; Bergqvist D; Wiklund L; Karacagil S Surgery; 2000 May; 127(5):571-6. PubMed ID: 10819067 [TBL] [Abstract][Full Text] [Related]
3. Alterations in cerebrospinal fluid PO(2), PCO(2), and pH measurements during and after experimental thoracic aortic cross-clamping. Ulus F; Hellberg A; Ulus AT; Karacagil S Ann Vasc Surg; 2009; 23(1):122-7. PubMed ID: 18657389 [TBL] [Abstract][Full Text] [Related]
4. A prolonged spinal cord ischaemia model in pigs. Passive shunting offers stable central haemodynamics during aortic occlusion. Hellberg A; Christiansson L; Tulga Ulus A; Bergqvist D; Wiklund L; Karacagil S Eur J Vasc Endovasc Surg; 2000 Mar; 19(3):318-23. PubMed ID: 10753699 [TBL] [Abstract][Full Text] [Related]
5. Relationship between intrathecal oxygen tension and ultrastructural changes in the spinal cord during experimental aortic clamping. Christiansson L; Hellberg A; Svensson BA; Bergqvist D; Wiklund L; Karacagil S Eur J Vasc Endovasc Surg; 2000 Apr; 19(4):413-20. PubMed ID: 10801376 [TBL] [Abstract][Full Text] [Related]
7. Aspects of the spinal cord circulation as assessed by intrathecal oxygen tension monitoring during various arterial interruptions in the pig. Christiansson L; Ulus AT; Hellberg A; Bergqvist D; Wiklund L; Karacagil S J Thorac Cardiovasc Surg; 2001 Apr; 121(4):762-72. PubMed ID: 11279419 [TBL] [Abstract][Full Text] [Related]
8. Monitoring of intrathecal oxygen tension during experimental aortic occlusion predicts ultrastructural changes in the spinal cord. Hellberg A; Ulus AT; Christiansson L; Westman J; Leppänen O; Bergqvist D; Karacagil S J Thorac Cardiovasc Surg; 2001 Feb; 121(2):316-23. PubMed ID: 11174737 [TBL] [Abstract][Full Text] [Related]
9. Effect of central venous pressure on spinal cord oxygenation. Ulus AT; Hellberg A; Ulus F; Karacagil S Asian Cardiovasc Thorac Ann; 2009 Jan; 17(1):46-53. PubMed ID: 19515880 [TBL] [Abstract][Full Text] [Related]
10. Protecting the ischemic spinal cord during aortic clamping: the influence of selective hypothermia and spinal cord perfusion pressure. Wisselink W; Becker MO; Nguyen JH; Money SR; Hollier LH J Vasc Surg; 1994 May; 19(5):788-95; discussion 795-6. PubMed ID: 8170032 [TBL] [Abstract][Full Text] [Related]
11. Transcutaneous near-infrared spectroscopy for monitoring spinal cord ischemia: an experimental study in swine. Suehiro K; Funao T; Fujimoto Y; Mukai A; Nakamura M; Nishikawa K J Clin Monit Comput; 2017 Oct; 31(5):975-979. PubMed ID: 27568348 [TBL] [Abstract][Full Text] [Related]
12. Spinal cord protection by papaverine and intrathecal cooling during aortic crossclamping. Sun J; Hirsch D; Svensson G J Cardiovasc Surg (Torino); 1998 Dec; 39(6):839-42. PubMed ID: 9972912 [TBL] [Abstract][Full Text] [Related]
13. Retrograde perfusion of the spinal cord during aortic crossclamping: initial observations in the swine model. Follis F; Dragan R; Blisard KS; Hartshorne M; Temes T; Pett SB; Wernly JA J Thorac Cardiovasc Surg; 1999 Oct; 118(4):597-602; discussion 603. PubMed ID: 10504621 [TBL] [Abstract][Full Text] [Related]
14. Experimental and clinical assessment of the adequacy of partial bypass in maintenance of spinal cord blood flow during operations on the thoracic aorta. Laschinger JC; Cunningham JN; Nathan IM; Knopp EA; Cooper MM; Spencer FC Ann Thorac Surg; 1983 Oct; 36(4):417-26. PubMed ID: 6625737 [TBL] [Abstract][Full Text] [Related]
15. Circulatory support during crossclamping of the descending thoracic aorta. Evidence of improved organ perfusion. Cartier R; Orszulak TA; Pairolero PC; Schaff HV J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1038-46; discussion 1046-8. PubMed ID: 2359321 [TBL] [Abstract][Full Text] [Related]
16. Immediate Spinal Cord Collateral Blood Flow During Thoracic Aortic Procedures: The Role of Epidural Arcades. Kari FA; Wittmann K; Saravi B; Puttfarcken L; Krause S; Förster K; Maier S; Göbel U; Beyersdorf F Semin Thorac Cardiovasc Surg; 2016 Summer; 28(2):378-387. PubMed ID: 28043447 [TBL] [Abstract][Full Text] [Related]
17. Neurological outcome in a porcine model of descending thoracic aortic surgery. Left atrial-femoral artery bypass versus clamp/repair. Maharajh GS; Pascoe EA; Halliday WC; Grocott HP; Thiessen DB; Girling LG; Cheang MS; Mutch WA Stroke; 1996 Nov; 27(11):2095-100; discussion 2101. PubMed ID: 8898822 [TBL] [Abstract][Full Text] [Related]
18. Paraplegia after thoracic aortic occlusion: influence of cerebrospinal fluid drainage. Experimental and early clinical results. McCullough JL; Hollier LH; Nugent M J Vasc Surg; 1988 Jan; 7(1):153-60. PubMed ID: 3336121 [TBL] [Abstract][Full Text] [Related]
19. Real-time monitoring of spinal cord blood flow with a novel sensor mounted on a cerebrospinal fluid drainage catheter in an animal model. Hayatsu Y; Kawamoto S; Matsunaga T; Haga Y; Saiki Y J Thorac Cardiovasc Surg; 2014 Oct; 148(4):1726-31. PubMed ID: 24836994 [TBL] [Abstract][Full Text] [Related]
20. Strategies to prevent neurologic deficit based on motor-evoked potentials in type I and II thoracoabdominal aortic aneurysm repair. Jacobs MJ; Meylaerts SA; de Haan P; de Mol BA; Kalkman CJ J Vasc Surg; 1999 Jan; 29(1):48-57; discussion 57-9. PubMed ID: 9882789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]