These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10642880)

  • 1. Detecting localized repeats in genomic sequences: a new strategy and its application to Bacillus subtilis and Arabidopsis thaliana sequences.
    Klaerr-Blanchard M; Chiapello H; Coward E
    Comput Chem; 2000 Jan; 24(1):57-70. PubMed ID: 10642880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clustering method for repeat analysis in DNA sequences.
    Volfovsky N; Haas BJ; Salzberg SL
    Genome Biol; 2001; 2(8):RESEARCH0027. PubMed ID: 11532211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in Bacillus subtilis and other competent prokaryotes.
    Rocha EP; Danchin A; Viari A
    Mol Biol Evol; 1999 Sep; 16(9):1219-30. PubMed ID: 10486977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved approach for reconstructing consensus repeats from short sequence reads.
    Chu C; Pei J; Wu Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):566. PubMed ID: 30367582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FORRepeats: detects repeats on entire chromosomes and between genomes.
    Lefebvre A; Lecroq T; Dauchel H; Alexandre J
    Bioinformatics; 2003 Feb; 19(3):319-26. PubMed ID: 12584116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of repetitive DNA elements in Arabidopsis.
    Surzycki SA; Belknap WR
    J Mol Evol; 1999 Jun; 48(6):684-91. PubMed ID: 10229572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome.
    Thompson HL; Schmidt R; Dean C
    Nucleic Acids Res; 1996 Aug; 24(15):3017-22. PubMed ID: 8760888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species.
    Kamm A; Galasso I; Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1995 Mar; 27(5):853-62. PubMed ID: 7766876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAP: a new computer program for de novo identification of repeated sequences in whole genomes.
    Campagna D; Romualdi C; Vitulo N; Del Favero M; Lexa M; Cannata N; Valle G
    Bioinformatics; 2005 Mar; 21(5):582-8. PubMed ID: 15374857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A software program combining sequence motif searches with keywords for finding repeats containing DNA sequences.
    Bilgen M; Karaca M; Onus AN; Ince AG
    Bioinformatics; 2004 Dec; 20(18):3379-86. PubMed ID: 15256410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Genomemark': detecting word periodicity in biological sequences.
    Fadiel A; Eichenbaum KD; Hamza A
    J Biomol Struct Dyn; 2006 Feb; 23(4):457-64. PubMed ID: 16363880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Search of tandem repeats with insertion and deletions in the A. thaliana genome.
    Korotkov EV; Suvorova YM; Skryabin KG
    Dokl Biochem Biophys; 2017 Nov; 477(1):398-400. PubMed ID: 29297128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CGAT: a comparative genome analysis tool for visualizing alignments in the analysis of complex evolutionary changes between closely related genomes.
    Uchiyama I; Higuchi T; Kobayashi I
    BMC Bioinformatics; 2006 Oct; 7():472. PubMed ID: 17062155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting periodic patterns in biological sequences.
    Coward E; Drabløs F
    Bioinformatics; 1998; 14(6):498-507. PubMed ID: 9694988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural plasmid instability in Bacillus subtilis: effect of direct and inverted repeats.
    Peeters BP; de Boer JH; Bron S; Venema G
    Mol Gen Genet; 1988 Jun; 212(3):450-8. PubMed ID: 3138528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons.
    Yoshida K; Seki S; Fujimura M; Miwa Y; Fujita Y
    DNA Res; 1995; 2(2):61-9. PubMed ID: 7584049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding and Characterizing Repeats in Plant Genomes.
    Nicolas J; Peterlongo P; Tempel S
    Methods Mol Biol; 2016; 1374():293-337. PubMed ID: 26519414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tnat1 and Tnat2 from Arabidopsis thaliana: novel transposable elements with tandem repeat sequences.
    Noma K; Ohtsubo E
    DNA Res; 2000 Feb; 7(1):1-7. PubMed ID: 10718193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HomologMiner: looking for homologous genomic groups in whole genomes.
    Hou M; Berman P; Hsu CH; Harris RS
    Bioinformatics; 2007 Apr; 23(8):917-25. PubMed ID: 17308341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.