These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10643632)

  • 1. Sonoelectrochemical and sonochemical effects of cavitation: correlation with interfacial cavitation induced by 20 kHz ultrasound.
    Hardcastle JL; Ball JC; Hong Q; Marken F; Compton RG; Bull SD; Davies SG
    Ultrason Sonochem; 2000 Jan; 7(1):7-14. PubMed ID: 10643632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the ultrasound induced activity by the presence of an electrode in a sonoreactor working at two low frequencies (20 and 40 kHz). Part I: Active zone visualization by laser tomography.
    Mandroyan A; Viennet R; Bailly Y; Doche ML; Hihn JY
    Ultrason Sonochem; 2009 Jan; 16(1):88-96. PubMed ID: 18583170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel angular geometry for the sonochemical silver recovery process at cylinder electrodes.
    Pollet BG; Lorimer JP; Phull SS; Mason TJ; Hihn JY
    Ultrason Sonochem; 2003 Jul; 10(4-5):217-22. PubMed ID: 12818385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic sonoelectrochemical removal of substituted phenols: implications of ultrasonic parameters and physicochemical properties.
    Kim K; Cho E; Thokchom B; Cui M; Jang M; Khim J
    Ultrason Sonochem; 2015 May; 24():172-7. PubMed ID: 25432401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the ultrasound induced activity by the presence of an electrode in a sono-reactor working at two low frequencies (20 and 40 kHz). Part II: Mapping flow velocities by particle image velocimetry (PIV).
    Mandroyan A; Doche ML; Hihn JY; Viennet R; Bailly Y; Simonin L
    Ultrason Sonochem; 2009 Jan; 16(1):97-104. PubMed ID: 18586547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does power ultrasound affect heterogeneous electron transfer kinetics?
    Pollet BG
    Ultrason Sonochem; 2019 Apr; 52():6-12. PubMed ID: 30606677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode.
    Yang B; Zuo J; Tang X; Liu F; Yu X; Tang X; Jiang H; Gan L
    Ultrason Sonochem; 2014 Jul; 21(4):1310-7. PubMed ID: 24485396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of hemolytic and sonochemical activity of ultrasonic cavitation in a rotating tube.
    Miller DL; Thomas RM
    Ultrasound Med Biol; 1993; 19(1):83-90. PubMed ID: 8456532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing and characterizing a multi-stepped ultrasonic horn for enhanced sonochemical performance.
    Wei Z; Kosterman JA; Xiao R; Pee GY; Cai M; Weavers LK
    Ultrason Sonochem; 2015 Nov; 27():325-333. PubMed ID: 26186851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancement of high power ultrasound technology for the destruction of surface active waterborne contaminants.
    Sostaric JZ; Weavers LK
    Ultrason Sonochem; 2010 Aug; 17(6):1021-6. PubMed ID: 20036177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An impedance study of the adsorption of nucleic acid bases at glassy carbon electrodes.
    Oliveira-Brett AM; Brett CM; Silva LA
    Bioelectrochemistry; 2002 May; 56(1-2):33-5. PubMed ID: 12009439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y; Miyoshi N
    J Phys Chem A; 2005 Jun; 109(21):4869-72. PubMed ID: 16833832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonochemical and sonoelectrochemical production of hydrogen.
    Islam MH; Burheim OS; Pollet BG
    Ultrason Sonochem; 2019 Mar; 51():533-555. PubMed ID: 30442455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors.
    Kirpalani DM; McQuinn KJ
    Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic proposal for the electrochemical and sonoelectrochemical oxidation of thiram on a boron-doped diamond anode.
    Steter JR; Kossuga MH; Motheo AJ
    Ultrason Sonochem; 2016 Jan; 28():21-30. PubMed ID: 26384879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonoelectrochemical degradation of triclosan in water.
    Ren YZ; Franke M; Anschuetz F; Ondruschka B; Ignaszak A; Braeutigam P
    Ultrason Sonochem; 2014 Nov; 21(6):2020-5. PubMed ID: 24768032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic cavitation at low gas pressures in PZT-based ultrasonic systems.
    Mondal J; Li W; Rezk AR; Yeo LY; Lakkaraju R; Ghosh P; Ashokkumar M
    Ultrason Sonochem; 2021 May; 73():105493. PubMed ID: 33609993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor.
    Wang YC; Yao MC
    Ultrason Sonochem; 2013 Jan; 20(1):565-70. PubMed ID: 22959558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of ultrasound upon the oxidation of thiosulphate on stainless steel and platinum electrodes.
    Pollet BG; Lorimer JP; Hihn JY; Phull SS; Mason TJ; Walton DJ
    Ultrason Sonochem; 2002 Oct; 9(5):267-74. PubMed ID: 12371204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.