These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10643756)

  • 1. Interactive mathematical models of subjective alertness and cognitive throughput in humans.
    Jewett ME; Kronauer RE
    J Biol Rhythms; 1999 Dec; 14(6):588-97. PubMed ID: 10643756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of sleep inertia dissipation in human performance and alertness.
    Jewett ME; Wyatt JK; Ritz-De Cecco A; Khalsa SB; Dijk DJ; Czeisler CA
    J Sleep Res; 1999 Mar; 8(1):1-8. PubMed ID: 10188130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss.
    Bermudez EB; Klerman EB; Czeisler CA; Cohen DA; Wyatt JK; Phillips AJ
    PLoS One; 2016; 11(3):e0151770. PubMed ID: 27019198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance.
    Dijk DJ; Duffy JF; Czeisler CA
    J Sleep Res; 1992 Jun; 1(2):112-7. PubMed ID: 10607036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of subjective alertness and motivation on human performance independent of circadian and homeostatic regulation.
    Hull JT; Wright KP; Czeisler CA
    J Biol Rhythms; 2003 Aug; 18(4):329-38. PubMed ID: 12932085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
    Burke TM; Scheer FAJL; Ronda JM; Czeisler CA; Wright KP
    J Sleep Res; 2015 Aug; 24(4):364-371. PubMed ID: 25773686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of the human circadian pacemaker to moderately bright light.
    Boivin DB; Duffy JF; Kronauer RE; Czeisler CA
    J Biol Rhythms; 1994; 9(3-4):315-31. PubMed ID: 7772798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue and performance models: general background and commentary on the circadian alertness simulator for fatigue risk assessment in transportation.
    Dijk DJ; Larkin W
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A119-21. PubMed ID: 15018272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictions from the three-process model of alertness.
    Akerstedt T; Folkard S; Portin C
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A75-83. PubMed ID: 15018267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.
    Van Dongen HP; Dinges DF
    J Sleep Res; 2003 Sep; 12(3):181-7. PubMed ID: 12941057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between alertness, performance, and body temperature in humans.
    Wright KP; Hull JT; Czeisler CA
    Am J Physiol Regul Integr Comp Physiol; 2002 Dec; 283(6):R1370-7. PubMed ID: 12388468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the three-process model of alertness: estimating phase, time on shift, and successive night effects.
    Folkard S; Akerstedt T; Macdonald I; Tucker P; Spencer MB
    J Biol Rhythms; 1999 Dec; 14(6):577-87. PubMed ID: 10643755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognition in circadian rhythm sleep disorders.
    Reid KJ; McGee-Koch LL; Zee PC
    Prog Brain Res; 2011; 190():3-20. PubMed ID: 21531242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On mathematical modeling of circadian rhythms, performance, and alertness.
    Klerman EB; St Hilaire M
    J Biol Rhythms; 2007 Apr; 22(2):91-102. PubMed ID: 17440211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical research issues in development of biomathematical models of fatigue and performance.
    Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A181-91. PubMed ID: 15018283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.