These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10643756)

  • 21. Uncovering physiologic mechanisms of circadian rhythms and sleep/wake regulation through mathematical modeling.
    Kronauer RE; Gunzelmann G; Van Dongen HP; Doyle FJ; Klerman EB
    J Biol Rhythms; 2007 Jun; 22(3):233-45. PubMed ID: 17517913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase-dependent effect of room light exposure in a 5-h advance of the sleep-wake cycle: implications for jet lag.
    Boivin DB; James FO
    J Biol Rhythms; 2002 Jun; 17(3):266-76. PubMed ID: 12054198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenotyping of neurobehavioral vulnerability to circadian phase during sleep loss.
    Goel N; Basner M; Dinges DF
    Methods Enzymol; 2015; 552():285-308. PubMed ID: 25707282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness.
    Short MA; Centofanti S; Hilditch C; Banks S; Lushington K; Dorrian J
    Appl Ergon; 2016 May; 54():72-82. PubMed ID: 26851466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The three-process model of alertness and its extension to performance, sleep latency, and sleep length.
    Akerstedt T; Folkard S
    Chronobiol Int; 1997 Mar; 14(2):115-23. PubMed ID: 9095372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian rhythms, sleep deprivation, and human performance.
    Goel N; Basner M; Rao H; Dinges DF
    Prog Mol Biol Transl Sci; 2013; 119():155-90. PubMed ID: 23899598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dose-response relationship between sleep duration and human psychomotor vigilance and subjective alertness.
    Jewett ME; Dijk DJ; Kronauer RE; Dinges DF
    Sleep; 1999 Mar; 22(2):171-9. PubMed ID: 10201061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine.
    Wesensten NJ; Belenky G; Kautz MA; Thorne DR; Reichardt RM; Balkin TJ
    Psychopharmacology (Berl); 2002 Jan; 159(3):238-47. PubMed ID: 11862356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accounting for partial sleep deprivation and cumulative sleepiness in the Three-Process Model of alertness regulation.
    Akerstedt T; Ingre M; Kecklund G; Folkard S; Axelsson J
    Chronobiol Int; 2008 Apr; 25(2):309-19. PubMed ID: 18484366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sleep restriction masks the influence of the circadian process on sleep propensity.
    Sargent C; Darwent D; Ferguson SA; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):565-71. PubMed ID: 22621352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting cognitive impairment and accident risk.
    Raslear TG; Hursh SR; Van Dongen HP
    Prog Brain Res; 2011; 190():155-67. PubMed ID: 21531251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of rotation interval on sleepiness and circadian dynamics on forward rotating 3-shift systems.
    Postnova S; Postnov DD; Seneviratne M; Robinson PA
    J Biol Rhythms; 2014 Feb; 29(1):60-70. PubMed ID: 24492883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-sleep inertia performance benefits of longer naps in simulated nightwork and extended operations.
    Mulrine HM; Signal TL; van den Berg MJ; Gander PH
    Chronobiol Int; 2012 Nov; 29(9):1249-57. PubMed ID: 23002951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling interindividual differences in spontaneous internal desynchrony patterns.
    Gleit RD; Diniz Behn CG; Booth V
    J Biol Rhythms; 2013 Oct; 28(5):339-55. PubMed ID: 24132060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can a simple balance task be used to assess fitness for duty?
    Sargent C; Darwent D; Ferguson SA; Roach GD
    Accid Anal Prev; 2012 Mar; 45 Suppl():74-9. PubMed ID: 22239936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Addition of a non-photic component to a light-based mathematical model of the human circadian pacemaker.
    St Hilaire MA; Klerman EB; Khalsa SB; Wright KP; Czeisler CA; Kronauer RE
    J Theor Biol; 2007 Aug; 247(4):583-99. PubMed ID: 17531270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiologically-based modeling of sleep-wake regulatory networks.
    Booth V; Diniz Behn CG
    Math Biosci; 2014 Apr; 250():54-68. PubMed ID: 24530893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleepiness phenomics: modeling individual differences in subjective sleepiness profiles.
    Mairesse O; De Valck E; Quanten S; Neu D; Cortoos A; Pattyn N; Theuns P; Cluydts R; Hofmans J
    Int J Psychophysiol; 2014 Jul; 93(1):150-61. PubMed ID: 23566886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter- and intra-individual variability in performance near the circadian nadir during sleep deprivation.
    Frey DJ; Badia P; Wright KP
    J Sleep Res; 2004 Dec; 13(4):305-15. PubMed ID: 15560765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.
    Fulcher BD; Phillips AJ; Robinson PA
    J Theor Biol; 2010 May; 264(2):407-19. PubMed ID: 20176034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.