These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10643756)

  • 41. The influence of circadian phase and prior wake on neuromuscular function.
    Sargent C; Ferguson SA; Darwent D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):911-21. PubMed ID: 20636205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Circadian and sleep episode duration influences on cognitive performance following the process of awakening.
    Matchock RL
    Int Rev Neurobiol; 2010; 93():129-51. PubMed ID: 20970004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of caffeine on skin and core temperatures, alertness, and recovery sleep during circadian misalignment.
    McHill AW; Smith BJ; Wright KP
    J Biol Rhythms; 2014 Apr; 29(2):131-43. PubMed ID: 24682207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The two-process model of sleep regulation revisited.
    Achermann P
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A37-43. PubMed ID: 15018264
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circadian alertness simulator for fatigue risk assessment in transportation: application to reduce frequency and severity of truck accidents.
    Moore-Ede M; Heitmann A; Guttkuhn R; Trutschel U; Aguirre A; Croke D
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A107-18. PubMed ID: 15018271
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-circadian direct effects of light on sleep and alertness: lessons from transgenic mouse models.
    Hubbard J; Ruppert E; Gropp CM; Bourgin P
    Sleep Med Rev; 2013 Dec; 17(6):445-52. PubMed ID: 23602126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Validation of the S and C components of the three-process model of alertness regulation.
    Akerstedt T; Folkard S
    Sleep; 1995 Jan; 18(1):1-6. PubMed ID: 7761737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of human sleep-wake regulation and circadian rhythmicity.
    Dijk DJ; Lockley SW
    J Appl Physiol (1985); 2002 Feb; 92(2):852-62. PubMed ID: 11796701
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-of-day mediates the influences of extended wake and sleep restriction on simulated driving.
    Matthews RW; Ferguson SA; Zhou X; Sargent C; Darwent D; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):572-9. PubMed ID: 22621353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulating the homeostatic process to predict performance during chronic sleep restriction.
    Johnson ML; Belenky G; Redmond DP; Thorne DR; Williams JD; Hursh SR; Balkin TJ
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A141-6. PubMed ID: 15018276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of a new dynamic light regimen in a nuclear power control room without windows on quickly rotating shiftworkers--effects on health, wakefulness, and circadian alignment: a pilot study.
    Lowden A; Åkerstedt T
    Chronobiol Int; 2012 Jun; 29(5):641-9. PubMed ID: 22621361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A unified mathematical model to quantify performance impairment for both chronic sleep restriction and total sleep deprivation.
    Rajdev P; Thorsley D; Rajaraman S; Rupp TL; Wesensten NJ; Balkin TJ; Reifman J
    J Theor Biol; 2013 Aug; 331():66-77. PubMed ID: 23623949
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of Sleep and Biobehavioral Patterns on Multidimensional Cognitive Performance: Longitudinal, In-the-Wild Study.
    Kalanadhabhatta M; Rahman T; Ganesan D
    J Med Internet Res; 2021 Feb; 23(2):e23936. PubMed ID: 33599622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A parallelism between human body temperature and performance independent of the endogenous circadian pacemaker.
    Monk TH; Carrier J
    J Biol Rhythms; 1998 Apr; 13(2):113-22. PubMed ID: 9554573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting duration of sleep from the three process model of regulation of alertness.
    Akerstedt T; Folkard S
    Occup Environ Med; 1996 Feb; 53(2):136-41. PubMed ID: 8777451
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?
    Deboer T
    Neurobiol Sleep Circadian Rhythms; 2018 Jun; 5():68-77. PubMed ID: 31236513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting sleep latency from the three-process model of alertness regulation.
    Akerstedt T; Folkard S
    Psychophysiology; 1996 Jul; 33(4):385-9. PubMed ID: 8753938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mathematical models of sleep regulation.
    Achermann P; Borbély AA
    Front Biosci; 2003 May; 8():s683-93. PubMed ID: 12700054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Statistical model building and model criticism for human circadian data.
    Brown EN; Luithardt H
    J Biol Rhythms; 1999 Dec; 14(6):609-16. PubMed ID: 10643759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Commentary: future considerations for models of human neurobehavioral function.
    Dinges DF; Achermann P
    J Biol Rhythms; 1999 Dec; 14(6):598-601. PubMed ID: 10643757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.