These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10643759)

  • 1. Statistical model building and model criticism for human circadian data.
    Brown EN; Luithardt H
    J Biol Rhythms; 1999 Dec; 14(6):609-16. PubMed ID: 10643759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical model of the human core-temperature circadian rhythm.
    Brown EN; Choe Y; Luithardt H; Czeisler CA
    Am J Physiol Endocrinol Metab; 2000 Sep; 279(3):E669-83. PubMed ID: 10950837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data.
    Brown EN; Czeisler CA
    J Biol Rhythms; 1992; 7(3):177-202. PubMed ID: 1421473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.
    Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA
    J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revised limit cycle oscillator model of human circadian pacemaker.
    Jewett ME; Forger DB; Kronauer RE
    J Biol Rhythms; 1999 Dec; 14(6):493-9. PubMed ID: 10643746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of the human circadian pacemaker to moderately bright light.
    Boivin DB; Duffy JF; Kronauer RE; Czeisler CA
    J Biol Rhythms; 1994; 9(3-4):315-31. PubMed ID: 7772798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based human circadian phase estimation using a particle filter.
    Mott C; Dumont G; Boivin DB; Mollicone D
    IEEE Trans Biomed Eng; 2011 May; 58(5):1325-36. PubMed ID: 21257371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period.
    Klerman EB; Dijk DJ; Kronauer RE; Czeisler CA
    Am J Physiol; 1996 Jan; 270(1 Pt 2):R271-82. PubMed ID: 8769811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-amplitude resetting of the human circadian pacemaker via bright light: a further analysis.
    Jewett ME; Kronauer RE; Czeisler CA
    J Biol Rhythms; 1994; 9(3-4):295-314. PubMed ID: 7772797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refinement of a limit cycle oscillator model of the effects of light on the human circadian pacemaker.
    Jewett ME; Kronauer RE
    J Theor Biol; 1998 Jun; 192(4):455-65. PubMed ID: 9680719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of amplitude recovery dynamics of two limit cycle oscillator models of the human circadian pacemaker.
    Indic P; Forger DB; St Hilaire MA; Dean DA; Brown EN; Kronauer RE; Klerman EB; Jewett ME
    Chronobiol Int; 2005; 22(4):613-29. PubMed ID: 16147894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Model-Based Approach to Optimizing Ultradian Forced Desynchrony Protocols for Human Circadian Research.
    Stack N; Barker D; Carskadon M; Diniz Behn C
    J Biol Rhythms; 2017 Oct; 32(5):485-498. PubMed ID: 28954576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simpler model of the human circadian pacemaker.
    Forger DB; Jewett ME; Kronauer RE
    J Biol Rhythms; 1999 Dec; 14(6):532-7. PubMed ID: 10643750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone.
    Khalsa SBS ; Jewett ME; Duffy JF; Czeisler CA
    J Biol Rhythms; 2000 Dec; 15(6):524-30. PubMed ID: 11106069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stochastic differential equation model of diurnal cortisol patterns.
    Brown EN; Meehan PM; Dempster AP
    Am J Physiol Endocrinol Metab; 2001 Mar; 280(3):E450-61. PubMed ID: 11171600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phase dynamics model of human circadian rhythms.
    Nakao M; Yamamoto K; Honma K; Hashimoto S; Honma S; Katayama N; Yamamoto M
    J Biol Rhythms; 2002 Oct; 17(5):476-89. PubMed ID: 12375623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of the human circadian system and its application to jet lag.
    Gundel A; Spencer MB
    Chronobiol Int; 1992 Apr; 9(2):148-59. PubMed ID: 1568265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical model of diurnal variation in human growth hormone.
    Klerman EB; Adler GK; Jin M; Maliszewski AM; Brown EN
    Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1118-26. PubMed ID: 12888486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On analyzing circadian rhythms data using nonlinear mixed models with harmonic terms.
    Albert PS; Hunsberger S
    Biometrics; 2005 Dec; 61(4):1115-20; discussion 1120-2. PubMed ID: 16401286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimates of the daily phase and amplitude of the endogenous component of the circadian rhythm of core temperature in sedentary humans living nychthemerally.
    Waterhouse J; Weinert D; Minors D; Folkard S; Owens D; Atkinson G; Nevill A; Reilly T
    Biol Rhythm Res; 2000 Feb; 31(1):88-107. PubMed ID: 11543399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.