These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10643776)

  • 1. Utilization and transport of acetic acid in Dekkera anomala and their implications on the survival of the yeast in acidic environments.
    Gerós H; Cássio F; Leão C
    J Food Prot; 2000 Jan; 63(1):96-101. PubMed ID: 10643776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments.
    Sousa MJ; Miranda L; Côrte-Real M; Leão C
    Appl Environ Microbiol; 1996 Sep; 62(9):3152-7. PubMed ID: 8795203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leao C
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1385-1390. PubMed ID: 8704978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae.
    Stratford M; Nebe-von-Caron G; Steels H; Novodvorska M; Ueckert J; Archer DB
    Int J Food Microbiol; 2013 Feb; 161(3):164-71. PubMed ID: 23334094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids.
    Thomas KC; Hynes SH; Ingledew WM
    Appl Environ Microbiol; 2002 Apr; 68(4):1616-23. PubMed ID: 11916676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.
    Cássio F; Leáo C
    Appl Environ Microbiol; 1991 Dec; 57(12):3623-8. PubMed ID: 1664712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala.
    Côrte-Real M; Leão C
    Appl Environ Microbiol; 1990 Apr; 56(4):1109-13. PubMed ID: 2339872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on the transport of L(-)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease.
    Cássio F; Leão C
    Yeast; 1993 Jul; 9(7):743-52. PubMed ID: 8368008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leão C
    Appl Environ Microbiol; 1998 Feb; 64(2):665-8. PubMed ID: 9464405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae.
    Cássio F; Leão C; van Uden N
    Appl Environ Microbiol; 1987 Mar; 53(3):509-13. PubMed ID: 3034152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sublethal concentrations of undissociated acetic acid may not always stimulate acid resistance in Salmonella enterica sub. enterica serovar Enteritidis Phage Type 4: Implications of challenge substrate associated factors.
    Gavriil A; Thanasoulia A; Skandamis PN
    PLoS One; 2020; 15(7):e0234999. PubMed ID: 32702039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal effect of dairy propionibacteria--contribution of organic acids.
    Lind H; Jonsson H; Schnürer J
    Int J Food Microbiol; 2005 Feb; 98(2):157-65. PubMed ID: 15681043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii.
    Sousa MJ; Rodrigues F; Coôrte-Real M; Leão C
    Microbiology (Reading); 1998 Mar; 144 ( Pt 3)():665-670. PubMed ID: 9580346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of malic acid in the yeast Schizosaccharomyces pombe: evidence for a proton-dicarboxylate symport.
    Sousa MJ; Mota M; Leão C
    Yeast; 1992 Dec; 8(12):1025-31. PubMed ID: 1293882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis.
    Capusoni C; Arioli S; Zambelli P; Moktaduzzaman M; Mora D; Compagno C
    Appl Environ Microbiol; 2016 Aug; 82(15):4673-4681. PubMed ID: 27235432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis.
    Carlsson J; Hamilton IR
    Oral Microbiol Immunol; 1996 Dec; 11(6):412-9. PubMed ID: 9467375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis.
    Ter Beek A; Wijman JG; Zakrzewska A; Orij R; Smits GJ; Brul S
    Food Microbiol; 2015 Feb; 45(Pt A):71-82. PubMed ID: 25481064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese.
    Wemmenhove E; van Valenberg HJ; Zwietering MH; van Hooijdonk TC; Wells-Bennik MH
    Food Microbiol; 2016 Sep; 58():63-7. PubMed ID: 27217360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.