BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10644595)

  • 1. Human femoral artery diameter in relation to knee extensor muscle mass, peak blood flow, and oxygen uptake.
    Rådegran G; Saltin B
    Am J Physiol Heart Circ Physiol; 2000 Jan; 278(1):H162-7. PubMed ID: 10644595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peak muscle perfusion and oxygen uptake in humans: importance of precise estimates of muscle mass.
    Râdegran G; Blomstrand E; Saltin B
    J Appl Physiol (1985); 1999 Dec; 87(6):2375-80. PubMed ID: 10601192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men.
    Christiansen D; Eibye K; Hostrup M; Bangsbo J
    J Physiol; 2020 Jun; 598(12):2337-2353. PubMed ID: 32246768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans.
    Râdegran G
    J Appl Physiol (1985); 1997 Oct; 83(4):1383-8. PubMed ID: 9338449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak skeletal muscle perfusion is maintained in patients with chronic heart failure when only a small muscle mass is exercised.
    Magnusson G; Kaijser L; Sylvén C; Karlberg KE; Isberg B; Saltin B
    Cardiovasc Res; 1997 Feb; 33(2):297-306. PubMed ID: 9074693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamics and O2 uptake during maximal knee extensor exercise in untrained and trained human quadriceps muscle: effects of hyperoxia.
    Mourtzakis M; González-Alonso J; Graham TE; Saltin B
    J Appl Physiol (1985); 2004 Nov; 97(5):1796-802. PubMed ID: 15208296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle.
    Helge JW; Stallknecht B; Pedersen BK; Galbo H; Kiens B; Richter EA
    J Physiol; 2003 Jan; 546(Pt 1):299-305. PubMed ID: 12509497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle oxygen kinetics at onset of intense dynamic exercise in humans.
    Bangsbo J; Krustrup P; González-Alonso J; Boushel R; Saltin B
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R899-906. PubMed ID: 10956247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in exercising limb blood flow variability between cardiac and muscle contraction cycle related analysis during dynamic knee extensor.
    Osada T; Rådegran G
    J Sports Med Phys Fitness; 2006 Dec; 46(4):590-7. PubMed ID: 17119525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise.
    Pedersen PK; Kiens B; Saltin B
    Acta Physiol Scand; 1999 Aug; 166(4):309-18. PubMed ID: 10468668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of .VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise.
    Paterson ND; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2005 Aug; 99(2):683-90. PubMed ID: 15817720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in the rheological flow profile in conduit femoral artery during rhythmic thigh muscle contractions in humans.
    Osada T; Rådegran G
    Jpn J Physiol; 2005 Feb; 55(1):19-28. PubMed ID: 15796786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense knee-extensor exercise in humans.
    Nyberg M; Christensen PM; Mortensen SP; Hellsten Y; Bangsbo J
    Exp Physiol; 2014 Oct; 99(10):1399-408. PubMed ID: 25085840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.
    Richardson RS; Grassi B; Gavin TP; Haseler LJ; Tagore K; Roca J; Wagner PD
    J Appl Physiol (1985); 1999 Mar; 86(3):1048-53. PubMed ID: 10066722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-Body Vibration Stimulates Microvascular Blood Flow in Skeletal Muscle.
    Betik AC; Parker L; Kaur G; Wadley GD; Keske MA
    Med Sci Sports Exerc; 2021 Feb; 53(2):375-383. PubMed ID: 32826637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow measurements in lower limb arteries using duplex ultrasound.
    Hussain ST
    Ann R Coll Surg Engl; 1997 Sep; 79(5):323-30. PubMed ID: 9326122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markedly improved skeletal muscle function with local muscle training in patients with chronic heart failure.
    Gordon A; Tyni-Lenné R; Persson H; Kaijser L; Hultman E; Sylvén C
    Clin Cardiol; 1996 Jul; 19(7):568-74. PubMed ID: 8818438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thigh oxygen uptake at the onset of intense exercise is not affected by a reduction in oxygen delivery caused by hypoxia.
    Christensen PM; Nordsborg NB; Nybo L; Mortensen SP; Sander M; Secher NH; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2012 Oct; 303(8):R843-9. PubMed ID: 22933023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans.
    Hillig T; Krustrup P; Fleming I; Osada T; Saltin B; Hellsten Y
    J Physiol; 2003 Jan; 546(Pt 1):307-14. PubMed ID: 12509498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.