These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 10644611)
1. Estrogen status affects sensitivity to focal cerebral ischemia in stroke-prone spontaneously hypertensive rats. Carswell HV; Dominiczak AF; Macrae IM Am J Physiol Heart Circ Physiol; 2000 Jan; 278(1):H290-4. PubMed ID: 10644611 [TBL] [Abstract][Full Text] [Related]
2. Genetic and gender influences on sensitivity to focal cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Carswell HV; Anderson NH; Clark JS; Graham D; Jeffs B; Dominiczak AF; Macrae IM Hypertension; 1999 Feb; 33(2):681-5. PubMed ID: 10024327 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the microglial response to cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Marks L; Carswell HV; Peters EE; Graham DI; Patterson J; Dominiczak AF; Macrae IM Hypertension; 2001 Jul; 38(1):116-22. PubMed ID: 11463771 [TBL] [Abstract][Full Text] [Related]
4. Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. McCabe C; Gallagher L; Gsell W; Graham D; Dominiczak AF; Macrae IM Stroke; 2009 Dec; 40(12):3864-8. PubMed ID: 19797186 [TBL] [Abstract][Full Text] [Related]
5. Differential effects of 17beta-estradiol upon stroke damage in stroke prone and normotensive rats. Carswell HV; Bingham D; Wallace K; Nilsen M; Graham DI; Dominiczak AF; Macrae IM J Cereb Blood Flow Metab; 2004 Mar; 24(3):298-304. PubMed ID: 15091110 [TBL] [Abstract][Full Text] [Related]
6. Investigation of estrogen status and increased stroke sensitivity on cerebral blood flow after a focal ischemic insult. Carswell HV; Anderson NH; Morton JJ; McCulloch J; Dominiczak AF; Macrae IM J Cereb Blood Flow Metab; 2000 Jun; 20(6):931-6. PubMed ID: 10894176 [TBL] [Abstract][Full Text] [Related]
7. Susceptibility to cerebral infarction in the stroke-prone spontaneously hypertensive rat is inherited as a dominant trait. Gratton JA; Sauter A; Rudin M; Lees KR; McColl J; Reid JL; Dominiczak AF; Macrae IM Stroke; 1998 Mar; 29(3):690-4. PubMed ID: 9506614 [TBL] [Abstract][Full Text] [Related]
8. Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. McGill JK; Gallagher L; Carswell HV; Irving EA; Dominiczak AF; Macrae IM Stroke; 2005 Jan; 36(1):135-41. PubMed ID: 15569870 [TBL] [Abstract][Full Text] [Related]
9. Pathological alterations of astrocytes in stroke-prone spontaneously hypertensive rats under ischemic conditions. Yamagata K Neurochem Int; 2012 Jan; 60(1):91-8. PubMed ID: 22100568 [TBL] [Abstract][Full Text] [Related]
10. Focal Ischemic Injury with Complex Middle Cerebral Artery in Stroke-Prone Spontaneously Hypertensive Rats with Loss-Of-Function in NADPH Oxidases. Yao H; Ferdaus MZ; Zahid HM; Ohara H; Nakahara T; Nabika T PLoS One; 2015; 10(9):e0138551. PubMed ID: 26389812 [TBL] [Abstract][Full Text] [Related]
11. Congenic removal of a QTL for blood pressure attenuates infarct size produced by middle cerebral artery occlusion in hypertensive rats. Yao H; Cui ZH; Masuda J; Nabika T Physiol Genomics; 2007 Jun; 30(1):69-73. PubMed ID: 17327494 [TBL] [Abstract][Full Text] [Related]
12. A high-potassium diet reduces infarct size and improves vascular structure in hypertensive rats. Dorrance AM; Pollock DM; Romanko OP; Stepp DW Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R415-22. PubMed ID: 16917016 [TBL] [Abstract][Full Text] [Related]
13. Neuronal vulnerability of stroke-prone spontaneously hypertensive rats to ischemia and its prevention with antioxidants such as vitamin E. Yamagata K; Tagami M; Yamori Y Neuroscience; 2010 Sep; 170(1):1-7. PubMed ID: 20633610 [TBL] [Abstract][Full Text] [Related]
14. Dorsal cerebral collaterals of stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY). Coyle P Anat Rec; 1987 May; 218(1):40-4. PubMed ID: 3605659 [TBL] [Abstract][Full Text] [Related]
15. Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Takemori K; Murakami T; Kometani T; Ito H Microvasc Res; 2013 Nov; 90():169-72. PubMed ID: 23978333 [TBL] [Abstract][Full Text] [Related]
16. Oxotremorine-induced cerebral hyperemia does not predict infarction volume in spontaneously hypertensive or stroke-prone rats. Harukuni I; Takahashi H; Traystman RJ; Bhardwaj A; Kirsch JR Crit Care Med; 2000 Jan; 28(1):190-5. PubMed ID: 10667521 [TBL] [Abstract][Full Text] [Related]
17. Spironolactone improves structure and increases tone in the cerebral vasculature of male spontaneously hypertensive stroke-prone rats. Rigsby CS; Pollock DM; Dorrance AM Microvasc Res; 2007 May; 73(3):198-205. PubMed ID: 17250855 [TBL] [Abstract][Full Text] [Related]
18. There is no valid evidence presented as to an impaired endothelial NO system in the stroke-prone spontaneously hypertensive rats. Yamashita T; Taka T; Nojima R; Ohta Y; Seki J; Yamamoto J Thromb Res; 2002 Mar; 105(6):507-11. PubMed ID: 12091051 [TBL] [Abstract][Full Text] [Related]
19. Cardiac mechanical dysfunction induced by ischemia-reperfusion in perfused heart isolated from stroke-prone spontaneously hypertensive rats. Itoh T; Abe K; Tokumura M; Hirono S; Haruna M; Ibii N Clin Exp Hypertens; 2004 Aug; 26(6):485-98. PubMed ID: 15554452 [TBL] [Abstract][Full Text] [Related]
20. Neuroprotection by progesterone after transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Yousuf S; Atif F; Sayeed I; Wang J; Stein DG Horm Behav; 2016 Aug; 84():29-40. PubMed ID: 27283379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]