These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10646516)

  • 1. Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-kappaB activation.
    Nakai M; Qin ZH; Chen JF; Wang Y; Chase TN
    J Neurochem; 2000 Feb; 74(2):647-58. PubMed ID: 10646516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum.
    Qin ZH; Chen RW; Wang Y; Nakai M; Chuang DM; Chase TN
    J Neurosci; 1999 May; 19(10):4023-33. PubMed ID: 10234031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMDA and non-NMDA receptor-stimulated IkappaB-alpha degradation: differential effects of the caspase-3 inhibitor DEVD.CHO, ethanol and free radical scavenger OPC-14117.
    Nakai M; Qin Z; Wang Y; Chase TN
    Brain Res; 2000 Mar; 859(2):207-16. PubMed ID: 10719066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-stimulation of cyclic-AMP-linked metabotropic glutamate receptors in rat striatum attenuates excitotoxin-induced nuclear factor-kappaB activation and apoptosis.
    Wang Y; Qin ZH; Nakai M; Chen RW; Chuang DM; Chase TN
    Neuroscience; 1999; 94(4):1153-62. PubMed ID: 10625054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear factor-kappa B contributes to excitotoxin-induced apoptosis in rat striatum.
    Qin ZH; Wang Y; Nakai M; Chase TN
    Mol Pharmacol; 1998 Jan; 53(1):33-42. PubMed ID: 9443930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms.
    Wang Y; Dong XX; Cao Y; Liang ZQ; Han R; Wu JC; Gu ZL; Qin ZH
    Eur J Neurosci; 2009 Dec; 30(12):2258-70. PubMed ID: 20092569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A caspase-3-like protease is involved in NF-kappaB activation induced by stimulation of N-methyl-D-aspartate receptors in rat striatum.
    Qin Z; Wang Y; Chasea TN
    Brain Res Mol Brain Res; 2000 Sep; 80(2):111-22. PubMed ID: 11038244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical scavenger OPC-14117 attenuates quinolinic acid-induced NF-kappaB activation and apoptosis in rat striatum.
    Nakai M; Qin ZH; Wang Y; Chase TN
    Brain Res Mol Brain Res; 1999 Jan; 64(1):59-68. PubMed ID: 9889320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NF-kappaB contributes to 6-hydroxydopamine-induced apoptosis of nigral dopaminergic neurons through p53.
    Liang ZQ; Li YL; Zhao XL; Han R; Wang XX; Wang Y; Chase TN; Bennett MC; Qin ZH
    Brain Res; 2007 May; 1145():190-203. PubMed ID: 17368433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures.
    Kristensen BW; Noraberg J; Jakobsen B; Gramsbergen JB; Ebert B; Zimmer J
    Brain Res; 1999 Sep; 841(1-2):143-59. PubMed ID: 10546997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid.
    Wang Y; Han R; Liang ZQ; Wu JC; Zhang XD; Gu ZL; Qin ZH
    Autophagy; 2008 Feb; 4(2):214-26. PubMed ID: 18094625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear factor-kappaB-dependent cyclin D1 induction and DNA replication associated with N-methyl-D-aspartate receptor-mediated apoptosis in rat striatum.
    Liang ZQ; Wang X; Li LY; Wang Y; Chen RW; Chuang DM; Chase TN; Qin ZH
    J Neurosci Res; 2007 May; 85(6):1295-309. PubMed ID: 17385714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostaglandin A(1) protects striatal neurons against excitotoxic injury in rat striatum.
    Qin ZH; Wang Y; Chen RW; Wang X; Ren M; Chuang DM; Chase TN
    J Pharmacol Exp Ther; 2001 Apr; 297(1):78-87. PubMed ID: 11259530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenium reduces the proapoptotic signaling associated to NF-kappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolinate in rat corpus striatum.
    Santamaría A; Vázquez-Román B; La Cruz VP; González-Cortés C; Trejo-Solís MC; Galván-Arzate S; Jara-Prado A; Guevara-Fonseca J; Ali SF
    Synapse; 2005 Dec; 58(4):258-66. PubMed ID: 16206188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of superoxide and nuclear factor-kappaB signaling in N-methyl-D-aspartate-induced necrosis and apoptosis.
    McInnis J; Wang C; Anastasio N; Hultman M; Ye Y; Salvemini D; Johnson KM
    J Pharmacol Exp Ther; 2002 May; 301(2):478-87. PubMed ID: 11961046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of N-methyl-D-aspartate receptors induces apoptosis in rat brain.
    Qin ZH; Wang Y; Chase TN
    Brain Res; 1996 Jul; 725(2):166-76. PubMed ID: 8836522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons.
    Furukawa K; Mattson MP
    J Neurochem; 1998 May; 70(5):1876-86. PubMed ID: 9572271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathepsin L plays a role in quinolinic acid-induced NF-Κb activation and excitotoxicity in rat striatal neurons.
    Wang YR; Qin S; Han R; Wu JC; Liang ZQ; Qin ZH; Wang Y
    PLoS One; 2013; 8(9):e75702. PubMed ID: 24073275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysosomal enzyme cathepsin B is involved in kainic acid-induced excitotoxicity in rat striatum.
    Wang Y; Gu ZL; Cao Y; Liang ZQ; Han R; Bennett MC; Qin ZH
    Brain Res; 2006 Feb; 1071(1):245-9. PubMed ID: 16409994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kainate mediates nuclear factor-kappa B activation in hippocampus via phosphatidylinositol-3 kinase and extracellular signal-regulated protein kinase.
    Lubin FD; Johnston LD; Sweatt JD; Anderson AE
    Neuroscience; 2005; 133(4):969-81. PubMed ID: 15916859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.