These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10646944)

  • 21. A novel approach for synthesis of zwitterionic polyurethane coating with protein resistance.
    Wang C; Ma C; Mu C; Lin W
    Langmuir; 2014 Nov; 30(43):12860-7. PubMed ID: 25310180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative comparison of shear-dependent Staphylococcus aureus adhesion to three polyurethane ionomer analogs with distinct surface properties.
    Dickinson RB; Nagel JA; Proctor RA; Cooper SL
    J Biomed Mater Res; 1997 Aug; 36(2):152-62. PubMed ID: 9261676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of plasma proteins to the derivatives of polyetherurethaneurea carrying tertiary amino groups in the side chains.
    Ito Y; Sisido M; Imanishi Y
    J Biomed Mater Res; 1986 Oct; 20(8):1139-55. PubMed ID: 3782176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano-BaSO4: a novel antimicrobial additive to pellethane.
    Aninwene GE; Stout D; Yang Z; Webster TJ
    Int J Nanomedicine; 2013; 8():1197-205. PubMed ID: 23658486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo leucocyte interactions on Pellethane surfaces.
    Brunstedt MR; Anderson JM; Spilizewski KL; Marchant RE; Hiltner A
    Biomaterials; 1990 Aug; 11(6):370-8. PubMed ID: 2207224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A robust mixed-charge zwitterionic polyurethane coating integrated with antibacterial and anticoagulant functions for interventional blood-contacting devices.
    Peng J; Li K; Du Y; Yi F; Wu L; Liu G
    J Mater Chem B; 2023 Aug; 11(33):8020-8032. PubMed ID: 37530181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S
    J Biomed Mater Res A; 2013 Jun; 101(6):1599-611. PubMed ID: 23172859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles.
    Xu D; Su Y; Zhao L; Meng F; Liu C; Guan Y; Zhang J; Luo J
    J Biomed Mater Res A; 2017 Feb; 105(2):531-538. PubMed ID: 27737518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of bacterial adherence to titanium versus polyurethane for cardiac implantable electronic devices.
    Viola GM; Rosenblatt J; Raad II; Darouiche RO
    Am J Cardiol; 2013 Jun; 111(12):1764-6. PubMed ID: 23523061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antiviral and antibacterial polyurethanes of various modalities.
    Park D; Larson AM; Klibanov AM; Wang Y
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1134-46. PubMed ID: 23306899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Vivo Stability of Polyurethane-Based Electrospun Vascular Grafts in Terms of Chemistry and Mechanics.
    Gostev AA; Shundrina IK; Pastukhov VI; Shutov AV; Chernonosova VS; Karpenko AA; Laktionov PP
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of cellular responses on engineered polyurethane implants.
    Khandwekar A; Rho CK
    J Biomed Mater Res A; 2012 Sep; 100(9):2211-22. PubMed ID: 22492665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes.
    Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S
    J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prevention of biofilm formation by polyquaternary polymer.
    Dirain CO; Silva RC; Antonelli PJ
    Int J Pediatr Otorhinolaryngol; 2016 Sep; 88():157-62. PubMed ID: 27497405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Commercial polyurethanes: the potential influence of auxiliary chemicals on the biodegradation process.
    Vermette P; Wang GB; Santerre JP; Thibault J; Laroche G
    J Biomater Sci Polym Ed; 1999; 10(7):729-49. PubMed ID: 10426229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial activity of polyurethanes coated with antibiotics: a new approach to the realization of medical devices exempt from microbial colonization.
    Piozzi A; Francolini I; Occhiaperti L; Venditti M; Marconi W
    Int J Pharm; 2004 Aug; 280(1-2):173-83. PubMed ID: 15265557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of telechelic cis-1,4-polyisoprene cationomers in the synthesis of antibacterial ionic polyurethanes and copolyurethanes bearing ammonium groups.
    Kébir N; Campistron I; Laguerre A; Pilard JF; Bunel C; Jouenne T
    Biomaterials; 2007 Oct; 28(29):4200-8. PubMed ID: 17610950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling biofilm formation with an N-halamine-based polymeric additive.
    Luo J; Chen Z; Sun Y
    J Biomed Mater Res A; 2006 Jun; 77(4):823-31. PubMed ID: 16575910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application.
    Yari A; Yeganeh H; Bakhshi H; Gharibi R
    J Biomed Mater Res A; 2014 Jan; 102(1):84-96. PubMed ID: 23606508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation.
    Williams RL; Krishna Y; Dixon S; Haridas A; Grierson I; Sheridan C
    J Mater Sci Mater Med; 2005 Dec; 16(12):1087-92. PubMed ID: 16362205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.