These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10646946)

  • 1. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement.
    Lewandrowski KU; Gresser JD; Wise DL; White RL; Trantolo DJ
    Biomaterials; 2000 Feb; 21(3):293-8. PubMed ID: 10646946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats.
    Lewandrowski KU; Gresser JD; Wise DL; Trantol DJ
    Biomaterials; 2000 Apr; 21(8):757-64. PubMed ID: 10721744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An injectable porous poly(propylene glycol-co-fumaric acid) bone repair material as an adjunct for intramedullary fixation.
    Hile DD; Kowaleski MP; Doherty SA; Lewandrowski KU; Trantolo DJ
    Biomed Mater Eng; 2005; 15(3):219-27. PubMed ID: 15912002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of osteoinduction with a biodegradable poly(propylene glycol-co-fumaric acid) bone graft extender. A histologic and histomorphometric study in rats.
    Lewandrowski KU; Bondre S; Gresser JD; Silva AE; Wise DL; Trantolo DJ
    Biomed Mater Eng; 1999; 9(5-6):325-34. PubMed ID: 10822488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous poly(propylene fumarate) foam coating of orthotopic cortical bone grafts for improved osteoconduction.
    Lewandrowski KU; Bondre S; Hile DD; Thompson BM; Wise DL; Tomford WW; Trantolo DJ
    Tissue Eng; 2002 Dec; 8(6):1017-27. PubMed ID: 12542947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A poly(propylene fumarate)--calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis.
    Chang CH; Liao TC; Hsu YM; Fang HW; Chen CC; Lin FH
    Biomaterials; 2010 May; 31(14):4048-55. PubMed ID: 20172606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a vinyl pyrrolidone/poly(propylene fumarate) resorbable bone cement.
    Gresser JD; Hsu SH; Nagaoka H; Lyons CM; Nieratko DP; Wise DL; Barabino GA; Trantolo DJ
    J Biomed Mater Res; 1995 Oct; 29(10):1241-7. PubMed ID: 8557726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of black phosphorus nanosheets into poly(propylene fumarate) biodegradable bone cement to enhance bioactivity and osteogenesis.
    Chen J; Huang X; Wang J; Chen W; Teng Y; Yin D
    J Orthop Surg Res; 2024 Jan; 19(1):98. PubMed ID: 38291442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable and biodegradable composite bone filler composed of poly(propylene fumarate) and calcium phosphate ceramic for vertebral augmentation procedure: An in vivo porcine study.
    Wu CC; Hsu LH; Sumi S; Yang KC; Yang SH
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2232-2243. PubMed ID: 27448108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a poly(propylene fumarate) foaming cement on the healing of bone defects.
    Lewandrowski KU; Cattaneo MV; Gresser JD; Wise DL; White RL; Bonassar L; Trantolo DJ
    Tissue Eng; 1999 Aug; 5(4):305-16. PubMed ID: 10477853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions.
    Domb AJ; Manor N; Elmalak O
    Biomaterials; 1996 Feb; 17(4):411-7. PubMed ID: 8938235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional stability of the alveolar ridge after implantation of a bioabsorbable bone graft substitute: a radiographic and histomorphometric study in rats.
    Hile DD; Sonis ST; Doherty SA; Tian X; Zhang Q; Jee WS; Trantolo DJ
    J Oral Implantol; 2005; 31(2):68-76. PubMed ID: 15871525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a porous, biodegradable biopolymer scaffold for mandibular reconstruction.
    Trantolo DJ; Sonis ST; Thompson BM; Wise DL; Lewandrowski KU; Hile DD
    Int J Oral Maxillofac Implants; 2003; 18(2):182-8. PubMed ID: 12705295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing porosity of poly(propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats.
    Lewandrowski KU; Gresser JD; Bondre S; Silva AE; Wise DL; Trantolo DJ
    J Biomater Sci Polym Ed; 2000; 11(8):879-89. PubMed ID: 11211098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved osteoconduction of cortical bone grafts by biodegradable foam coating.
    Lewandrowski KU; Bondre SP; Gresser JD; Wise DL; Tomford WW; Trantolo DJ
    Biomed Mater Eng; 1999; 9(5-6):265-75. PubMed ID: 10822482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Progress in researches on the synthesis of poly (propylene fumarate) and its crosslinking characteristics].
    Zhao W; Yang D; Li Z; Xu T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):381-4. PubMed ID: 15884560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate.
    Timmer MD; Ambrose CG; Mikos AG
    Biomaterials; 2003 Feb; 24(4):571-7. PubMed ID: 12437951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measures of osteoinductivity of a porous poly(propylene fumarate) bone graft extender.
    Lewandrowski KU; Hile DD; Thompson BM; Wise DL; Tomford WW; Trantolo DJ
    Tissue Eng; 2003 Feb; 9(1):85-93. PubMed ID: 12625957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4381-7. PubMed ID: 12219828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.