These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 10646946)
21. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Lewandrowski KU; Bondre SP; Wise DL; Trantolo DJ Biomed Mater Eng; 2003; 13(2):115-24. PubMed ID: 12775902 [TBL] [Abstract][Full Text] [Related]
22. Bioactive bone cement: effect of filler size on mechanical properties and osteoconductivity. Shinzato S; Nakamura T; Kokubo T; Kitamura Y J Biomed Mater Res; 2001 Sep; 56(3):452-8. PubMed ID: 11372064 [TBL] [Abstract][Full Text] [Related]
23. Studies on poly(propylene fumarate-co-ethylene glycol) based bone cement. Jayabalan M; Thomas V; Sreelatha PK Biomed Mater Eng; 2000; 10(2):57-71. PubMed ID: 11086840 [TBL] [Abstract][Full Text] [Related]
24. Enhancing degradability, bioactivity, and osteocompatibility of poly (propylene fumarate) bone filler by incorporation of Mg-Ca-P nanoparticles. Karfarma M; Esnaashary MH; Rezaie HR; Javadpour J; Naimi-Jamal MR Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111038. PubMed ID: 32993982 [TBL] [Abstract][Full Text] [Related]
25. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate). Kempen DH; Lu L; Kim C; Zhu X; Dhert WJ; Currier BL; Yaszemski MJ J Biomed Mater Res A; 2006 Apr; 77(1):103-11. PubMed ID: 16392139 [TBL] [Abstract][Full Text] [Related]
26. Biomechanical and histological evaluation of a calcium phosphate cement. Frankenburg EP; Goldstein SA; Bauer TW; Harris SA; Poser RD J Bone Joint Surg Am; 1998 Aug; 80(8):1112-24. PubMed ID: 9730120 [TBL] [Abstract][Full Text] [Related]
27. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG Biomaterials; 2002 Nov; 23(22):4373-80. PubMed ID: 12219827 [TBL] [Abstract][Full Text] [Related]
28. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. Wong CT; Lu WW; Chan WK; Cheung KM; Luk KD; Lu DS; Rabie AB; Deng LF; Leong JC J Biomed Mater Res A; 2004 Mar; 68(3):513-21. PubMed ID: 14762931 [TBL] [Abstract][Full Text] [Related]
29. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder. Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803 [TBL] [Abstract][Full Text] [Related]
31. Altered bioreactivity and limited osteoconductivity of calcium sulfate-based bone cements in the osteoporotic rat spine. Wang ML; Massie J; Allen RT; Lee YP; Kim CW Spine J; 2008; 8(2):340-50. PubMed ID: 17983844 [TBL] [Abstract][Full Text] [Related]
32. Antibiotic release from an experimental biodegradable bone cement. Gerhart TN; Roux RD; Horowitz G; Miller RL; Hanff P; Hayes WC J Orthop Res; 1988; 6(4):585-92. PubMed ID: 3379512 [TBL] [Abstract][Full Text] [Related]
33. Angiogenic Rg Salarian M; Xu WZ; Bohay R; Lui EM; Charpentier PA Macromol Biosci; 2017 Feb; 17(2):. PubMed ID: 27618224 [TBL] [Abstract][Full Text] [Related]
34. Injectable calcium phosphate cement as a bone-graft material around peri-implant dehiscence defects: a dog study. Arisan V; Ozdemir T; Anil A; Jansen JA; Ozer K Int J Oral Maxillofac Implants; 2008; 23(6):1053-62. PubMed ID: 19216274 [TBL] [Abstract][Full Text] [Related]
35. A poly(propylene glycol-co-fumaric acid) based bone graft extender for lumbar spinal fusion: in vivo assessment in a rabbit model. Hile DD; Kandziora F; Lewandrowski KU; Doherty SA; Kowaleski MP; Trantolo DJ Eur Spine J; 2006 Jun; 15(6):936-43. PubMed ID: 16133085 [TBL] [Abstract][Full Text] [Related]
36. Mechanical evaluation of a porous bone graft substitute based on poly(propylene glycol-co-fumaric acid). Hile DD; Kirker-Head C; Doherty SA; Kowaleski MP; McCool J; Wise DL; Trantolo DJ J Biomed Mater Res B Appl Biomater; 2003 Jul; 66(1):311-7. PubMed ID: 12808589 [TBL] [Abstract][Full Text] [Related]
37. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. Peter SJ; Yaszemski MJ; Suggs LJ; Payne RG; Langer R; Hayes WC; Unroe MR; Alemany LB; Engel PS; Mikos AG J Biomater Sci Polym Ed; 1997; 8(11):893-904. PubMed ID: 9342654 [TBL] [Abstract][Full Text] [Related]
38. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Link DP; van den Dolder J; Jurgens WJ; Wolke JG; Jansen JA Biomaterials; 2006 Oct; 27(28):4941-7. PubMed ID: 16759694 [TBL] [Abstract][Full Text] [Related]
39. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. Shahbazi S; Moztarzadeh F; Sadeghi GM; Jafari Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1201-9. PubMed ID: 27612818 [TBL] [Abstract][Full Text] [Related]
40. Strontium exerts dual effects on calcium phosphate cement: Accelerating the degradation and enhancing the osteoconductivity both in vitro and in vivo. Kuang GM; Yau WP; Wu J; Yeung KW; Pan H; Lam WM; Lu WW; Chiu KY J Biomed Mater Res A; 2015 May; 103(5):1613-21. PubMed ID: 25087971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]