BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10647180)

  • 1. Crystal structure of a transcriptionally active Smad4 fragment.
    Qin B; Lam SS; Lin K
    Structure; 1999 Dec; 7(12):1493-503. PubMed ID: 10647180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain.
    de Caestecker MP; Yahata T; Wang D; Parks WT; Huang S; Hill CS; Shioda T; Roberts AB; Lechleider RJ
    J Biol Chem; 2000 Jan; 275(3):2115-22. PubMed ID: 10636916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4.
    Jones JB; Kern SE
    Nucleic Acids Res; 2000 Jun; 28(12):2363-8. PubMed ID: 10871368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.
    Wu JW; Hu M; Chai J; Seoane J; Huse M; Li C; Rigotti DJ; Kyin S; Muir TW; Fairman R; Massagué J; Shi Y
    Mol Cell; 2001 Dec; 8(6):1277-89. PubMed ID: 11779503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction.
    Kuang C; Chen Y
    Oncogene; 2004 Feb; 23(5):1021-9. PubMed ID: 14647410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization.
    Correia JJ; Chacko BM; Lam SS; Lin K
    Biochemistry; 2001 Feb; 40(5):1473-82. PubMed ID: 11170475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization.
    Chacko BM; Qin B; Correia JJ; Lam SS; de Caestecker MP; Lin K
    Nat Struct Biol; 2001 Mar; 8(3):248-53. PubMed ID: 11224571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
    Pierreux CE; Nicolás FJ; Hill CS
    Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif.
    Makkar P; Metpally RP; Sangadala S; Reddy BV
    J Mol Graph Model; 2009 Apr; 27(7):803-12. PubMed ID: 19157940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of Smad1 activation by receptor kinase phosphorylation.
    Qin BY; Chacko BM; Lam SS; de Caestecker MP; Correia JJ; Lin K
    Mol Cell; 2001 Dec; 8(6):1303-12. PubMed ID: 11779505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential ubiquitination defines the functional status of the tumor suppressor Smad4.
    Morén A; Hellman U; Inada Y; Imamura T; Heldin CH; Moustakas A
    J Biol Chem; 2003 Aug; 278(35):33571-82. PubMed ID: 12794086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGIF1 homeodomain interacts with Smad MH1 domain and represses TGF-β signaling.
    Guca E; Suñol D; Ruiz L; Konkol A; Cordero J; Torner C; Aragon E; Martin-Malpartida P; Riera A; Macias MJ
    Nucleic Acids Res; 2018 Sep; 46(17):9220-9235. PubMed ID: 30060237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling.
    Shi Y; Wang YF; Jayaraman L; Yang H; Massagué J; Pavletich NP
    Cell; 1998 Sep; 94(5):585-94. PubMed ID: 9741623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells.
    De Bosscher K; Hill CS; Nicolás FJ
    Biochem J; 2004 Apr; 379(Pt 1):209-16. PubMed ID: 14715079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling.
    Wu JW; Krawitz AR; Chai J; Li W; Zhang F; Luo K; Shi Y
    Cell; 2002 Nov; 111(3):357-67. PubMed ID: 12419246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the core domain and the secondary structure of the transcriptional coactivator MBF1.
    Ozaki J; Takemaru KI; Ikegami T; Mishima M; Ueda H; Hirose S; Kabe Y; Handa H; Shirakawa M
    Genes Cells; 1999 Jul; 4(7):415-24. PubMed ID: 10469174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural basis for mutational inactivation of the tumour suppressor Smad4.
    Shi Y; Hata A; Lo RS; Massagué J; Pavletich NP
    Nature; 1997 Jul; 388(6637):87-93. PubMed ID: 9214508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway.
    Xu J; Attisano L
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4820-5. PubMed ID: 10781087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bone morphogenetic protein 2 signaling mediator Smad1 participates predominantly in osteogenic and not in chondrogenic differentiation in mesenchymal progenitors C3H10T1/2.
    Ju W; Hoffmann A; Verschueren K; Tylzanowski P; Kaps C; Gross G; Huylebroeck D
    J Bone Miner Res; 2000 Oct; 15(10):1889-99. PubMed ID: 11028440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.