BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10647981)

  • 1. Quantification of local deposition patterns of inhaled radon decay products in human bronchial airway bifurcations.
    Balásházy I; Hofmann W
    Health Phys; 2000 Feb; 78(2):147-58. PubMed ID: 10647981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local deposition distributions of inhaled radionuclides in the human tracheobronchial tree.
    Balásházy I; Farkas A; Hofmann W; Kurunczi S
    Radiat Prot Dosimetry; 2002; 99(1-4):469-70. PubMed ID: 12194355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear relationship of cell hit and transformation probabilities in a low dose of inhaled radon progenies.
    Balásházy I; Farkas A; Madas BG; Hofmann W
    J Radiol Prot; 2009 Jun; 29(2):147-62. PubMed ID: 19454792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of deposition and clearance of inhaled particles in central human airways.
    Balásházy I; Farkas A; Szöke I; Hofmann W; Sturm R
    Radiat Prot Dosimetry; 2003; 105(1-4):129-32. PubMed ID: 14526942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the effect of mucociliary clearance on the bronchial distribution of inhaled radon progenies and related cellular damage using a new deposition and clearance model for the lung.
    Farkas Á
    Radiat Environ Biophys; 2020 Nov; 59(4):651-661. PubMed ID: 32865689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition patterns of molecular phase radon progeny (218Po) in lung bifurcations.
    Kinsara AA; Loyalka SK; Tompson RV; Miller WH; Holub RF
    Health Phys; 1995 Mar; 68(3):371-82. PubMed ID: 7860308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of site-specific bronchial radon progeny deposition on the spatial and temporal distributions of cellular responses.
    Farkas A; Hofmann W; Balásházy I; Szoke I; Madas BG; Moustafa M
    Radiat Environ Biophys; 2011 May; 50(2):281-97. PubMed ID: 21327807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry.
    Szoke I; Balásházy I; Farkas A; Hofmann W
    Radiat Prot Dosimetry; 2007; 127(1-4):68-72. PubMed ID: 17561519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degree of inhomogeneity of the absorbed cell nucleus doses in the bronchial region of the human respiratory tract.
    Füri P; Farkas Á; Madas BG; Hofmann W; Winkler-Heil R; Kudela G; Balásházy I
    Radiat Environ Biophys; 2020 Mar; 59(1):173-183. PubMed ID: 31587107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling intersubject variability of bronchial doses for inhaled radon progeny.
    Hofmann W; Winkler-Heil R; Hussain M
    Health Phys; 2010 Oct; 99(4):523-31. PubMed ID: 20838094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.
    Isaacs KK; Schlesinger RB; Martonen TB
    J Aerosol Med; 2006; 19(3):344-52. PubMed ID: 17034309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radon progeny size distributions and enhanced deposition effects from high radon concentrations in an enclosed chamber.
    Leonard BE
    Radiat Prot Dosimetry; 2004; 108(4):331-43. PubMed ID: 15103063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdosimetry of inhomogeneous radon progeny distributions in bronchial airways.
    Fakir H; Hofmann W; Caswell RS; Aubineau-Lanièce I
    Radiat Prot Dosimetry; 2005; 113(2):129-39. PubMed ID: 15644406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous measurements of bronchial exposure induced by radon decay products during inhalation.
    Iwaoka K; Tokonami S; Yonehara H; Ishikawa T; Doi M; Kobayashi Y; Yatabe Y; Takahashi H; Yamada Y
    Rev Sci Instrum; 2007 Sep; 78(9):093301. PubMed ID: 17902947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.
    Al-Jundi J; Li WB; Abusini M; Tschiersch J; Hoeschen C; Oeh U
    J Environ Radioact; 2011 Jun; 102(6):574-80. PubMed ID: 21477902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of lung cancer risk for radon exposures based on cellular alpha particle hits.
    Truta-Popa LA; Hofmann W; Cosma C
    Radiat Prot Dosimetry; 2011 May; 145(2-3):218-23. PubMed ID: 21471125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bronchial deposition of free ions and submicron particles studied in excised lung.
    James AC
    Inhaled Part; 1975 Sep; 4 Pt 1():203-19. PubMed ID: 1236157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local particle deposition patterns may play a key role in the development of lung cancer.
    Balashazy I; Hofmann W; Heistracher T
    J Appl Physiol (1985); 2003 May; 94(5):1719-25. PubMed ID: 12533493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of radon progeny deposition patterns in the human respiratory system.
    Rabi R; Oufni L; Kayouh N
    J Environ Radioact; 2024 Feb; 272():107365. PubMed ID: 38171111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of particle deposition in asymmetrical tracheobronchial model geometry.
    Farkas A; Balásházy I
    Comput Biol Med; 2008 Apr; 38(4):508-18. PubMed ID: 18336809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.