These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10647985)

  • 1. Effect of leachability on environmental risk assessment for naturally occurring radioactive materials in petroleum oil fields.
    Rajaretnam G; Spitz HB
    Health Phys; 2000 Feb; 78(2):191-8. PubMed ID: 10647985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of NORM in the oil industry from eastern and western deserts of Egypt.
    Shawky S; Amer H; Nada AA; El-Maksoud TM; Ibrahiem NM
    Appl Radiat Isot; 2001 Jul; 55(1):135-9. PubMed ID: 11339530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASSESSMENT OF NORM LEVELS AND RADIOLOGICAL HAZARDS FROM PETROLEUM EXTRACTION IN THE ONSHORE OIL FIELDS, EGYPT.
    Salahel Din K; Rashed W
    Radiat Prot Dosimetry; 2021 Aug; 194(4):223-232. PubMed ID: 34251025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation protection and radioactive scales in oil and gas production.
    Testa C; Desideri D; Meli MA; Roselli C; Bassignani A; Colombo G; Fantoni RF
    Health Phys; 1994 Jul; 67(1):34-8. PubMed ID: 8200799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.
    Abuahmad H
    Ann ICRP; 2015 Jun; 44(1 Suppl):214-20. PubMed ID: 25816275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radon emanation from NORM-contaminated pipe scale and soil at petroleum industry sites.
    White GJ; Rood AS
    J Environ Radioact; 2001; 54(3):401-13. PubMed ID: 11381946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiological assessment of petroleum pipe scale from pipe-rattling operations.
    Hamilton IS; Arno MG; Rock JC; Berry RO; Poston JW; Cezeaux JR; Park JM
    Health Phys; 2004 Oct; 87(4):382-97. PubMed ID: 15359185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naturally occurring radioactive materials (NORM) in ashes from a fuel-oil power plant in Cienfuegos, Cuba, and the associated radiation hazards.
    Alonso-Hernández CM; Bernal-Castillo J; Morera-Gómez Y; Guillen-Arruebarrena A; Cartas-Aguila HA; Acosta-Milián R
    Radiat Prot Dosimetry; 2014 Mar; 158(4):421-6. PubMed ID: 24084520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiological study of exposure levels in El Maghara underground coal mine.
    Amer HA; Shawky S; Hussein MI; Abd el-Hady ML
    J Environ Monit; 2002 Aug; 4(4):583-7. PubMed ID: 12196005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemistry of uranium and thorium in phosphate deposits at the Syrian coastal area (Al-Haffah and Al-Qaradaha) and their environmental impacts.
    Ghadeer A; Ibrahim A; Al-Masri MS
    Environ Geochem Health; 2019 Oct; 41(5):1861-1873. PubMed ID: 30879218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE CONTENT OF NATURAL RADIONUCLIDES IN TECHNOLOGICAL RESIDUES OF UKRAINIAN INDUSTRIES.
    Pavlenko T; Aksenov N; Fryziuk M
    Probl Radiac Med Radiobiol; 2019 Dec; 24():121-130. PubMed ID: 31841462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radium-226, 232Th, and 40K distribution in the environment of Kaiga of south west coast of India.
    Karunakara N; Somashekarappa HM; Avadhani DN; Mahesh HM; Narayana Y; Siddappa K
    Health Phys; 2001 May; 80(5):470-6. PubMed ID: 11316077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the radiological impact of oil refining industry.
    Bakr WF
    J Environ Radioact; 2010 Mar; 101(3):237-43. PubMed ID: 20005611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of radium isotopes to determine the age and origin of radioactive barite at oil-field production sites.
    Zielinski RA; Otton JK; Budahn JR
    Environ Pollut; 2001; 113(3):299-309. PubMed ID: 11428138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production.
    Hilal MA; Attallah MF; Mohamed GY; Fayez-Hassan M
    J Environ Radioact; 2014 Oct; 136():121-6. PubMed ID: 24949581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China.
    Chen SB; Zhu YG; Hu QH
    J Environ Radioact; 2005; 82(2):223-36. PubMed ID: 15878419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.
    Fathabadi N; Farahani MV; Amani S; Moradi M; Haddadi B
    Radiat Prot Dosimetry; 2011 Jun; 145(4):400-4. PubMed ID: 21148590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimated dose to man from uranium milling via the beef/milk food-chain pathway.
    Rayno DR
    Sci Total Environ; 1983 Dec; 31(3):219-41. PubMed ID: 6362004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ASSESSMENT OF THE NATURAL RADIOACTIVITY AND RADIOLOGICAL HAZARDS IN LAO CEMENT SAMPLES.
    Xayheungsy S; Khiem LH; Nam LD
    Radiat Prot Dosimetry; 2018 Oct; 181(3):208-213. PubMed ID: 29415136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of coal slag for naturally occurring radioactive material.
    Spitz HB; Rajaretnam G
    Am Ind Hyg Assoc J; 1998 Jul; 59(7):471-7. PubMed ID: 9697295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.