BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10648607)

  • 1. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L.
    Christensen S; Pont-Kingdon G; Carroll D
    Mol Cell Biol; 2000 Feb; 20(4):1219-26. PubMed ID: 10648607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications.
    Christensen S; Pont-Kingdon G; Carroll D
    Genetica; 2000; 110(3):245-56. PubMed ID: 11766845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1.
    Anzai T; Takahashi H; Fujiwara H
    Mol Cell Biol; 2001 Jan; 21(1):100-8. PubMed ID: 11113185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition.
    Feng Q; Moran JV; Kazazian HH; Boeke JD
    Cell; 1996 Nov; 87(5):905-16. PubMed ID: 8945517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements.
    Yang J; Malik HS; Eickbush TH
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7847-52. PubMed ID: 10393910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrotransposon R1Bm endonuclease cleaves the target sequence.
    Feng Q; Schumann G; Boeke JD
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2083-8. PubMed ID: 9482842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA expression from a site-specific non-LTR retrotransposon microinjected into Xenopus oocytes.
    Pont-Kingdon G; Chi E; Christensen S; Carroll D
    Genetica; 1998; 104(1):67-76. PubMed ID: 9949703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse transcriptase activity and untranslated region sharing of a new RTE-like, non-long terminal repeat retrotransposon from the human blood fluke, Schistosoma japonicum.
    Laha T; Brindley PJ; Smout MJ; Verity CK; McManus DP; Loukas A
    Int J Parasitol; 2002 Aug; 32(9):1163-74. PubMed ID: 12117499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribonucleoprotein formation by the ORF1 protein of the non-LTR retrotransposon Tx1L in Xenopus oocytes.
    Pont-Kingdon G; Chi E; Christensen S; Carroll D
    Nucleic Acids Res; 1997 Aug; 25(15):3088-94. PubMed ID: 9224609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pido, a non-long terminal repeat retrotransposon of the chicken repeat 1 family from the genome of the Oriental blood fluke, Schistosoma japonicum.
    Laha T; Brindley PJ; Verity CK; McManus DP; Loukas A
    Gene; 2002 Feb; 284(1-2):149-59. PubMed ID: 11891056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite transposable elements in the Xenopus laevis genome.
    Garrett JE; Knutzon DS; Carroll D
    Mol Cell Biol; 1989 Jul; 9(7):3018-27. PubMed ID: 2550791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon.
    Kurzynska-Kokorniak A; Jamburuthugoda VK; Bibillo A; Eickbush TH
    J Mol Biol; 2007 Nov; 374(2):322-33. PubMed ID: 17936300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Footprint of the retrotransposon R2Bm protein on its target site before and after cleavage.
    Christensen S; Eickbush TH
    J Mol Biol; 2004 Mar; 336(5):1035-45. PubMed ID: 15037067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Entamoeba histolytica LINE/SINE pair inserts at common target sites cleaved by the restriction enzyme-like LINE-encoded endonuclease.
    Mandal PK; Bagchi A; Bhattacharya A; Bhattacharya S
    Eukaryot Cell; 2004 Feb; 3(1):170-9. PubMed ID: 14871947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
    Morrish TA; Garcia-Perez JL; Stamato TD; Taccioli GE; Sekiguchi J; Moran JV
    Nature; 2007 Mar; 446(7132):208-12. PubMed ID: 17344853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon.
    Weichenrieder O; Repanas K; Perrakis A
    Structure; 2004 Jun; 12(6):975-86. PubMed ID: 15274918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects.
    Kubo Y; Okazaki S; Anzai T; Fujiwara H
    Mol Biol Evol; 2001 May; 18(5):848-57. PubMed ID: 11319268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the restriction enzyme-like endonuclease encoded by the Entamoeba histolytica non-long terminal repeat retrotransposon EhLINE1.
    Yadav VP; Mandal PK; Rao DN; Bhattacharya S
    FEBS J; 2009 Dec; 276(23):7070-82. PubMed ID: 19878305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition of endonuclease specificity during evolution of L1 retrotransposon.
    Ichiyanagi K; Nishihara H; Duvernell DD; Okada N
    Mol Biol Evol; 2007 Sep; 24(9):2009-15. PubMed ID: 17602167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase.
    Luan DD; Eickbush TH
    Mol Cell Biol; 1996 Sep; 16(9):4726-34. PubMed ID: 8756630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.