BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10648819)

  • 1. Substrate specificity determinants of the checkpoint protein kinase Chk1.
    Hutchins JR; Hughes M; Clarke PR
    FEBS Lett; 2000 Jan; 466(1):91-5. PubMed ID: 10648819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation.
    Manke IA; Nguyen A; Lim D; Stewart MQ; Elia AE; Yaffe MB
    Mol Cell; 2005 Jan; 17(1):37-48. PubMed ID: 15629715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast.
    Lopez-Girona A; Tanaka K; Chen XB; Baber BA; McGowan CH; Russell P
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11289-94. PubMed ID: 11553781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25.
    Sanchez Y; Wong C; Thoma RS; Richman R; Wu Z; Piwnica-Worms H; Elledge SJ
    Science; 1997 Sep; 277(5331):1497-501. PubMed ID: 9278511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism.
    Uto K; Inoue D; Shimuta K; Nakajo N; Sagata N
    EMBO J; 2004 Aug; 23(16):3386-96. PubMed ID: 15272308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation activates Chk1 and is required for checkpoint-mediated cell cycle arrest.
    Capasso H; Palermo C; Wan S; Rao H; John UP; O'Connell MJ; Walworth NC
    J Cell Sci; 2002 Dec; 115(Pt 23):4555-64. PubMed ID: 12415000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes.
    Nakajo N; Oe T; Uto K; Sagata N
    Dev Biol; 1999 Mar; 207(2):432-44. PubMed ID: 10068474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1.
    Kumagai A; Dunphy WG
    Nat Cell Biol; 2003 Feb; 5(2):161-5. PubMed ID: 12545175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase II.
    Hutchins JR; Dikovskaya D; Clarke PR
    Mol Biol Cell; 2003 Oct; 14(10):4003-14. PubMed ID: 14517314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes.
    Oe T; Nakajo N; Katsuragi Y; Okazaki K; Sagata N
    Dev Biol; 2001 Jan; 229(1):250-61. PubMed ID: 11133168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1.
    Zeng Y; Forbes KC; Wu Z; Moreno S; Piwnica-Worms H; Enoch T
    Nature; 1998 Oct; 395(6701):507-10. PubMed ID: 9774107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts.
    Guo Z; Kumagai A; Wang SX; Dunphy WG
    Genes Dev; 2000 Nov; 14(21):2745-56. PubMed ID: 11069891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dephosphorylation of the inhibitory phosphorylation site S287 in Xenopus Cdc25C by protein phosphatase-2A is inhibited by 14-3-3 binding.
    Hutchins JR; Dikovskaya D; Clarke PR
    FEBS Lett; 2002 Sep; 528(1-3):267-71. PubMed ID: 12297318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.
    Peng CY; Graves PR; Thoma RS; Wu Z; Shaw AS; Piwnica-Worms H
    Science; 1997 Sep; 277(5331):1501-5. PubMed ID: 9278512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts.
    Kumagai A; Guo Z; Emami KH; Wang SX; Dunphy WG
    J Cell Biol; 1998 Sep; 142(6):1559-69. PubMed ID: 9744884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved ATRMec1 phosphorylation-independent activation of Chk1 by single amino acid substitution in the GD domain.
    Pereira E; Chen Y; Sanchez Y
    Cell Cycle; 2009 Jun; 8(11):1788-93. PubMed ID: 19411848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation.
    Chen P; Luo C; Deng Y; Ryan K; Register J; Margosiak S; Tempczyk-Russell A; Nguyen B; Myers P; Lundgren K; Kan CC; O'Connor PM
    Cell; 2000 Mar; 100(6):681-92. PubMed ID: 10761933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHK1 kinase activity assay.
    Wang Y; Wang H
    Methods Mol Biol; 2004; 281():143-51. PubMed ID: 15220526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of Chk1 with 14-3-3 proteins is stimulated by DNA damage.
    Chen L; Liu TH; Walworth NC
    Genes Dev; 1999 Mar; 13(6):675-85. PubMed ID: 10090724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of substrate motifs for human Chk1 and hCds1/Chk2 by the oriented peptide library approach.
    O'Neill T; Giarratani L; Chen P; Iyer L; Lee CH; Bobiak M; Kanai F; Zhou BB; Chung JH; Rathbun GA
    J Biol Chem; 2002 May; 277(18):16102-15. PubMed ID: 11821419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.