These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10649289)

  • 21. Involvement of Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene expression in the presence of environmental time cues.
    Yamashino T; Ito S; Niwa Y; Kunihiro A; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2008 Dec; 49(12):1839-50. PubMed ID: 19015137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian and solar clocks interact in seasonal flowering.
    Yeang HY
    Bioessays; 2009 Nov; 31(11):1211-8. PubMed ID: 19795408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees.
    Böhlenius H; Huang T; Charbonnel-Campaa L; Brunner AM; Jansson S; Strauss SH; Nilsson O
    Science; 2006 May; 312(5776):1040-3. PubMed ID: 16675663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis.
    Scarcelli N; Kover PX
    Mol Ecol; 2009 May; 18(9):2039-49. PubMed ID: 19317844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.
    Strasser B; Alvarez MJ; Califano A; Cerdán PD
    Plant J; 2009 May; 58(4):629-40. PubMed ID: 19187043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic regulation of flowering.
    Dennis ES; Peacock WJ
    Curr Opin Plant Biol; 2007 Oct; 10(5):520-7. PubMed ID: 17709278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of photoperiodic control pathways produces short-day flowering in rice.
    Hayama R; Yokoi S; Tamaki S; Yano M; Shimamoto K
    Nature; 2003 Apr; 422(6933):719-22. PubMed ID: 12700762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vernalization and flowering time.
    Amasino RM
    Curr Opin Biotechnol; 2005 Apr; 16(2):154-8. PubMed ID: 15831380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering.
    Chen M; Ni M
    Plant J; 2006 Jun; 46(5):823-33. PubMed ID: 16709197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana.
    Niwa Y; Ito S; Nakamichi N; Mizoguchi T; Niinuma K; Yamashino T; Mizuno T
    Plant Cell Physiol; 2007 Jul; 48(7):925-37. PubMed ID: 17540692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana.
    Ito S; Niwa Y; Nakamichi N; Kawamura H; Yamashino T; Mizuno T
    Plant Cell Physiol; 2008 Feb; 49(2):201-13. PubMed ID: 18178585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function.
    Nakamichi N; Kita M; Ito S; Sato E; Yamashino T; Mizuno T
    Plant Cell Physiol; 2005 Apr; 46(4):609-19. PubMed ID: 15695441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.
    Imaizumi T; Tran HG; Swartz TE; Briggs WR; Kay SA
    Nature; 2003 Nov; 426(6964):302-6. PubMed ID: 14628054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of plant development to environment: control of flowering by daylength and temperature.
    Reeves PH; Coupland G
    Curr Opin Plant Biol; 2000 Feb; 3(1):37-42. PubMed ID: 10679453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A metabolic daylength measurement system mediates winter photoperiodism in plants.
    Liu W; Feke A; Leung CC; Tarté DA; Yuan W; Vanderwall M; Sager G; Wu X; Schear A; Clark DA; Thines BC; Gendron JM
    Dev Cell; 2021 Sep; 56(17):2501-2515.e5. PubMed ID: 34407427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of temperature with other environmental factors in controlling the development of plants.
    Porter JR; Delecolle R
    Symp Soc Exp Biol; 1988; 42():133-56. PubMed ID: 3077855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of flowering and reproduction in temperate grasses.
    Heide OM
    New Phytol; 1994 Oct; 128(2):347-362. PubMed ID: 33874362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spring and summer patterns in flowering onset, duration, and constancy across a water-limited gradient.
    Crimmins TM; Crimmins MA; Bertelsen CD
    Am J Bot; 2013 Jun; 100(6):1137-47. PubMed ID: 23709634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversification of photoperiodic response patterns in a collection of early-flowering mutants of Arabidopsis.
    Pouteau S; Carré I; Gaudin V; Ferret V; Lefebvre D; Wilson M
    Plant Physiol; 2008 Nov; 148(3):1465-73. PubMed ID: 18799658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenotypic Variation in Growth and Gene Expression Under Different Photoperiods in Allopatric Populations of the Copepod
    Schneck DT; Barreto FS
    Biol Bull; 2020 Apr; 238(2):106-118. PubMed ID: 32412840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.