These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 10649840)

  • 1. Quantitative structure-toxicity relationships for chlorophenols to bioluminescent lux-marked bacteria using atom-based semi-empirical molecular-orbital descriptors.
    Warne MA; Boyd EM; Meharg AA; Osborn D; Killham K; Lindon JC; Nicholson JK
    SAR QSAR Environ Res; 1999; 10(5):473-95. PubMed ID: 10649840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of mono-, di- and tri-chlorophenols to lux marked terrestrial bacteria, Burkholderia species Rasc c2 and Pseudomonas fluorescens.
    Boyd EM; Killham K; Meharg AA
    Chemosphere; 2001 Apr; 43(2):157-66. PubMed ID: 11297395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-toxicity relationships for halogenated substituted-benzenes to Vibrio fischeri, using atom-based semi-empirical molecular-orbital descriptors.
    Warne MA; Osborn D; Lindon JC; Nicholson JK
    Chemosphere; 1999 Jun; 38(14):3357-82. PubMed ID: 10390847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interspecies correlations of toxicity to eight aquatic organisms: theoretical considerations.
    Zhang XJ; Qin HW; Su LM; Qin WC; Zou MY; Sheng LX; Zhao YH; Abraham MH
    Sci Total Environ; 2010 Sep; 408(20):4549-55. PubMed ID: 20673582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity assessment of organic pollutants: reliability of bioluminescence inhibition assay and univariate QSAR models using freshly prepared Vibrio fischeri.
    Parvez S; Venkataraman C; Mukherji S
    Toxicol In Vitro; 2008 Oct; 22(7):1806-13. PubMed ID: 18701087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure activity relationship (QSAR) for toxicity of chlorophenols on L929 cells in vitro.
    Liu X; Chen J; Yu H; Zhao J; Giesy JP; Wang X
    Chemosphere; 2006 Sep; 64(10):1619-26. PubMed ID: 16790261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri.
    Cronin MT; Schultz TW
    Ecotoxicol Environ Saf; 1998 Jan; 39(1):65-9. PubMed ID: 9515077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of interactive toxicity of chlorophenols in water and soil using lux-marked biosensors.
    Tiensing T; Strachan N; Paton GI
    J Environ Monit; 2002 Aug; 4(4):482-9. PubMed ID: 12195988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of metals and organic chemicals evaluated with bioluminescence assays.
    Ren S; Frymier PD
    Chemosphere; 2005 Feb; 58(5):543-50. PubMed ID: 15620747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of genetically engineered bioluminescent surfactant resistant bacteria as toxicity assessment tools.
    Layton AC; Gregory B; Schultz TW; Sayler GS
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):222-8. PubMed ID: 10375425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the quantitative structure toxicity relations of chlorophenols in some aquatic species].
    Luo Y; Xu X
    Wei Sheng Yan Jiu; 2001 Mar; 30(2):72-4. PubMed ID: 11321953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquatic toxicity of four alkylphenols (3-tert-butylphenol, 2-isopropylphenol, 3-isopropylphenol, and 4-isopropylphenol) and their binary mixtures to microbes, invertebrates, and fish.
    Choi K; Sweet LI; Meier PG; Kim PG
    Environ Toxicol; 2004 Feb; 19(1):45-50. PubMed ID: 14758593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lux-biosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols.
    Sinclair GM; Paton GI; Meharg AA; Killham K
    FEMS Microbiol Lett; 1999 May; 174(2):273-8. PubMed ID: 10339819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSTR with extended topochemical atom indices. Part 5: Modeling of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using genetic function approximation.
    Roy K; Ghosh G
    Bioorg Med Chem; 2005 Feb; 13(4):1185-94. PubMed ID: 15670927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism for iron control of the Vibrio fischeri luminescence system: involvement of cyclic AMP and cyclic AMP receptor protein and modulation of DNA level.
    Dunlap PV
    J Biolumin Chemilumin; 1992 Jul; 7(3):203-14. PubMed ID: 1325097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of bacterial toxicity tests based on growth, dehydrogenase activity, and esterase activity of Pseudomonas fluorescens.
    Tørsløv J
    Ecotoxicol Environ Saf; 1993 Feb; 25(1):33-40. PubMed ID: 7682916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of chlorophenols to Pseudokirchneriella subcapitata under air-tight test environment.
    Chen CY; Lin JH
    Chemosphere; 2006 Jan; 62(4):503-9. PubMed ID: 16146643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: A systematic study.
    Viboud S; Papaiconomou N; Cortesi A; Chatel G; Draye M; Fontvieille D
    J Hazard Mater; 2012 May; 215-216():40-8. PubMed ID: 22417395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response surface analysis of bioconcentration by chlorinated organics using molecular connectivity.
    Hall LH; Stewart D
    SAR QSAR Environ Res; 1994; 2(3):181-91. PubMed ID: 8790645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of a bioluminescent bacterial assay in terrestrial ecotoxicity testing.
    Trott D; Dawson JJ; Killham KS; Miah MR; Wilson MJ; Paton GI
    J Environ Monit; 2007 Jan; 9(1):44-50. PubMed ID: 17213941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.