These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 10650191)
21. Factors affecting air sparging remediation systems using field data and numerical simulations. Benner ML; Mohtar RH; Lee LS J Hazard Mater; 2002 Dec; 95(3):305-29. PubMed ID: 12423944 [TBL] [Abstract][Full Text] [Related]
22. Field application of modified in situ soil flushing in combination with air sparging at a military site polluted by diesel and gasoline in Korea. Lee H; Lee Y; Kim J; Kim C Int J Environ Res Public Health; 2014 Aug; 11(9):8806-24. PubMed ID: 25166919 [TBL] [Abstract][Full Text] [Related]
23. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization. Braida WJ; Ong SK J Hazard Mater; 2001 Oct; 87(1-3):241-58. PubMed ID: 11566413 [TBL] [Abstract][Full Text] [Related]
24. [Simulation on remediation of benzene contaminated groundwater by air sparging]. Fan YL; Jiang L; Zhang D; Zhong MS; Jia XY Huan Jing Ke Xue; 2012 Nov; 33(11):3927-34. PubMed ID: 23323427 [TBL] [Abstract][Full Text] [Related]
25. Soil vapor extraction in sandy soils: influence of airflow rate. Albergaria JT; Alvim-Ferraz Mda C; Delerue-Matos C Chemosphere; 2008 Nov; 73(9):1557-61. PubMed ID: 18804838 [TBL] [Abstract][Full Text] [Related]
26. Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation. Vieth A; Kästner M; Schirmer M; Weiss H; Gödeke S; Meckenstock RU; Richnow HH Environ Toxicol Chem; 2005 Jan; 24(1):51-60. PubMed ID: 15683167 [TBL] [Abstract][Full Text] [Related]
27. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments. Kim J; Kim H; Annable MD J Contam Hydrol; 2015 Jan; 172():1-9. PubMed ID: 25462638 [TBL] [Abstract][Full Text] [Related]
28. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source. Cho MY; Oh MS; Annable MD; Kim H J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442 [TBL] [Abstract][Full Text] [Related]
29. Using pre-screening methods for an effective and reliable site characterization at megasites. Algreen M; Kalisz M; Stalder M; Martac E; Krupanek J; Trapp S; Bartke S Environ Sci Pollut Res Int; 2015 Oct; 22(19):14673-86. PubMed ID: 25982981 [TBL] [Abstract][Full Text] [Related]
30. Contamination levels and preliminary assessment of the technical feasibility of employing natural attenuation in 5 priority areas of Presidente Bernardes Refinery in Cubatão, São Paulo, Brazil. Schneider RP; Morano SC; Gigena MA; Missawa SK; Rocha RC; Da Silva LR; Ellert N; Kataoka S; Katsuragi C; Rosa Cda S; Filho LC Environ Monit Assess; 2006 May; 116(1-3):21-52. PubMed ID: 16779580 [TBL] [Abstract][Full Text] [Related]
31. Characteristics of major volatile organic hazardous air pollutants in the urban air of Kaohsiung city. Huang MC; Lin JJ Environ Geochem Health; 2007 Oct; 29(5):447-55. PubMed ID: 17380274 [TBL] [Abstract][Full Text] [Related]
32. Modeling MTBE and BTEX in lakes and reservoirs used for recreational boating. Heald PC; Schladow SG; Reuter JE; Allen BC Environ Sci Technol; 2005 Feb; 39(4):1111-8. PubMed ID: 15773484 [TBL] [Abstract][Full Text] [Related]
33. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site. Essaid HI; Cozzarelli IM; Eganhouse RP; Herkelrath WN; Bekins BA; Delin GN J Contam Hydrol; 2003 Dec; 67(1-4):269-99. PubMed ID: 14607480 [TBL] [Abstract][Full Text] [Related]
34. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site. Hall BL; Lachmar TE; Dupont RR J Hazard Mater; 2000 Jun; 74(3):165-86. PubMed ID: 10794912 [TBL] [Abstract][Full Text] [Related]
35. Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction. Qin CY; Zhao YS; Su Y; Zheng W Water Environ Res; 2013 Feb; 85(2):133-40. PubMed ID: 23472329 [TBL] [Abstract][Full Text] [Related]
36. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. Dawson JJ; Iroegbu CO; Maciel H; Paton GI J Appl Microbiol; 2008 Jan; 104(1):141-51. PubMed ID: 17922829 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of a commercially available ELISA kit as a tool to determine BTEX in groundwater. Francioni E; Fillmann G; Hamacher C; Wagener Ade L; Depledge MH; Readman JW; Meniconi Mde F Environ Technol; 2003 Jun; 24(6):665-70. PubMed ID: 12868520 [TBL] [Abstract][Full Text] [Related]
38. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Deeb RA; Alvarez-Cohen L Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561 [TBL] [Abstract][Full Text] [Related]
39. Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment. Jousse F; Atteia O; Höhener P; Cohen G Chemosphere; 2017 Dec; 188():182-189. PubMed ID: 28886552 [TBL] [Abstract][Full Text] [Related]
40. Experimental Evaluation of Preservation Techniques for Benzene, Toluene, Ethylbenzene, and Total Xylenes in Water Samples. Arnold R; Kong D; Douglas G; Hardenstine J; Rouhani S; Gala W Bull Environ Contam Toxicol; 2018 Jan; 100(1):54-58. PubMed ID: 29273961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]