BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10650906)

  • 1. Switching characteristics of a model for biochemical-reaction networks describing autophosphorylation versus dephosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Okamoto H; Ichikawa K
    Biol Cybern; 2000 Jan; 82(1):35-47. PubMed ID: 10650906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and role of brain calcium/calmodulin-dependent protein kinase II.
    Colbran RJ
    Neurochem Int; 1992 Dec; 21(4):469-97. PubMed ID: 1338943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II.
    Hudmon A; Schulman H
    Biochem J; 2002 Jun; 364(Pt 3):593-611. PubMed ID: 11931644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes.
    Guo T; Zhang T; Mestril R; Bers DM
    Circ Res; 2006 Aug; 99(4):398-406. PubMed ID: 16840718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II.
    Dosemeci A; Albers RW
    Biophys J; 1996 Jun; 70(6):2493-501. PubMed ID: 8744289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A.
    Strack S; Barban MA; Wadzinski BE; Colbran RJ
    J Neurochem; 1997 May; 68(5):2119-28. PubMed ID: 9109540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model.
    Dupont G; Houart G; De Koninck P
    Cell Calcium; 2003 Dec; 34(6):485-97. PubMed ID: 14572807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of multifunctional Ca2+/calmodulin-dependent protein kinases by Ca2+/calmodulin-dependent protein kinase phosphatase.
    Ishida A; Okuno S; Kitani T; Kameshita I; Fujisawa H
    Biochem Biophys Res Commun; 1998 Dec; 253(1):159-63. PubMed ID: 9875237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current theories of neuronal information processing performed by Ca2+/calmodulin-dependent protein kinase II with support and insights from computer modelling and simulation.
    Coomber C
    Comput Chem; 1998; 22(2-3):251-63. PubMed ID: 9618904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling.
    Bradshaw JM; Kubota Y; Meyer T; Schulman H
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10512-7. PubMed ID: 12928489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover.
    Miller P; Zhabotinsky AM; Lisman JE; Wang XJ
    PLoS Biol; 2005 Apr; 3(4):e107. PubMed ID: 15819604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting of calcium/calmodulin-dependent protein kinase II.
    Colbran RJ
    Biochem J; 2004 Feb; 378(Pt 1):1-16. PubMed ID: 14653781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-selective autophosphorylation of Ca2+/calmodulin-dependent protein kinase II as a synaptic encoding mechanism.
    Coomber CJ
    Neural Comput; 1998 Oct; 10(7):1653-78. PubMed ID: 9744891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system.
    Zhabotinsky AM
    Biophys J; 2000 Nov; 79(5):2211-21. PubMed ID: 11053103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brief seizure activity alters Ca2+/calmodulin dependent protein kinase II dephosphorylation and subcellular distribution in rat brain for several hours.
    Dong Y; Rosenberg HC
    Neurosci Lett; 2004 Mar; 357(2):95-8. PubMed ID: 15036583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons.
    Gu Z; Jiang Q; Yuen EY; Yan Z
    Mol Pharmacol; 2006 Mar; 69(3):813-22. PubMed ID: 16365279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+/calmodulin-dependent protein kinase II is reversibly autophosphorylated, inactivated and made sedimentable by acute neuronal excitation in rats in vivo.
    Yamagata Y; Obata K
    J Neurochem; 2004 Nov; 91(3):745-54. PubMed ID: 15485503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanism for the inactivation of Ca2+/calmodulin-dependent protein kinase II during prolonged seizure activity and its consequence after the recovery from seizure activity in rats in vivo.
    Yamagata Y; Imoto K; Obata K
    Neuroscience; 2006 Jul; 140(3):981-92. PubMed ID: 16632208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins. Characterization of binding to a 190-kDa postsynaptic density protein.
    McNeill RB; Colbran RJ
    J Biol Chem; 1995 Apr; 270(17):10043-9. PubMed ID: 7730306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.