BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 10650982)

  • 1. Extracellular ATP regulates exocytosis in inhibiting multiple Ca(2+) channel types in bovine chromaffin cells.
    Ulate G; Scott SR; González J; Gilabert JA; Artalejo AR
    Pflugers Arch; 2000 Jan; 439(3):304-14. PubMed ID: 10650982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct autocrine inhibition and cAMP-dependent potentiation of single L-type Ca2+ channels in bovine chromaffin cells.
    Carabelli V; Hernández-Guijo JM; Baldelli P; Carbone E
    J Physiol; 2001 Apr; 532(Pt 1):73-90. PubMed ID: 11283226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells.
    Carabelli V; Marcantoni A; Comunanza V; de Luca A; Díaz J; Borges R; Carbone E
    J Physiol; 2007 Oct; 584(Pt 1):149-65. PubMed ID: 17690152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells.
    Giancippoli A; Novara M; de Luca A; Baldelli P; Marcantoni A; Carbone E; Carabelli V
    Biophys J; 2006 Mar; 90(5):1830-41. PubMed ID: 16361341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocrine activation of P2X7 receptors mediates catecholamine secretion in chromaffin cells.
    Maldifassi MC; Guerra-Fernández MJ; Ponce D; Alfonso-Bueno S; Maripillán J; Vielma AH; Báez-Matus X; Marengo FD; Acuña-Castillo C; Sáez JC; Martínez AD; Cárdenas AM
    Br J Pharmacol; 2024 Apr; ():. PubMed ID: 38679932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells.
    Perrais D; Kleppe IC; Taraska JW; Almers W
    J Physiol; 2004 Oct; 560(Pt 2):413-28. PubMed ID: 15297569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. María Teresa Miras Portugal: a pioneer in the study of purinoceptors in chromaffin cells.
    Artalejo AR; Arribas-Blázquez M; Barahona MV; Llorente-Sáez C; Olivos-Oré LA
    Purinergic Signal; 2024 Apr; 20(2):109-113. PubMed ID: 36941507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Adrenal Medulla Modulates Mechanical Allodynia in a Rat Model of Neuropathic Pain.
    Arribas-Blázquez M; Olivos-Oré LA; Barahona MV; Wojnicz A; De Pascual R; Sánchez de la Muela M; García AG; Artalejo AR
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of P2X3 and P2X7 Receptors and TRPV1 Channels in Adrenomedullary Chromaffin Cells in a Rat Model of Neuropathic Pain.
    Arribas-Blázquez M; Olivos-Oré LA; Barahona MV; Sánchez de la Muela M; Solar V; Jiménez E; Gualix J; McIntosh JM; Ferrer-Montiel A; Miras-Portugal MT; Artalejo AR
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30609840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-type calcium channels in exocytosis and endocytosis of chromaffin cells.
    Nanclares C; Baraibar AM; Gandía L
    Pflugers Arch; 2018 Jan; 470(1):53-60. PubMed ID: 28866764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells.
    Vandael DH; Marcantoni A; Carbone E
    Curr Mol Pharmacol; 2015; 8(2):149-61. PubMed ID: 25966692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation by L-type calcium channels of endocytosis: an overview.
    Rosa JM; Nanclares C; Orozco A; Colmena I; de Pascual R; García AG; Gandía L
    J Mol Neurosci; 2012 Oct; 48(2):360-7. PubMed ID: 22581437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of BK channels to action potential repolarisation at minimal cytosolic Ca2+ concentration in chromaffin cells.
    Scott RS; Bustillo D; Olivos-Oré LA; Cuchillo-Ibañez I; Barahona MV; Carbone E; Artalejo AR
    Pflugers Arch; 2011 Oct; 462(4):545-57. PubMed ID: 21755285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of calcium channels and exocytosis in mouse adrenal chromaffin cells by prostaglandin EP3 receptors.
    Jewell ML; Breyer RM; Currie KP
    Mol Pharmacol; 2011 Jun; 79(6):987-96. PubMed ID: 21383044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-modulation of Ca2+ channels by endogenously released ATP and opioids: from the isolated chromaffin cell to the slice of adrenal medullae.
    Hernández A; Segura-Chama P; Albiñana E; Hernández-Cruz A; Hernández-Guijo JM
    Cell Mol Neurobiol; 2010 Nov; 30(8):1209-16. PubMed ID: 21080058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.
    Currie KP
    Cell Mol Neurobiol; 2010 Nov; 30(8):1201-8. PubMed ID: 21061161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of N and PQ calcium channels by calcium entry through L channels in chromaffin cells.
    Rosa JM; Gandía L; García AG
    Pflugers Arch; 2009 Aug; 458(4):795-807. PubMed ID: 19347353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G protein betagamma subunits modulate the number and nature of exocytotic fusion events in adrenal chromaffin cells independent of calcium entry.
    Yoon EJ; Hamm HE; Currie KP
    J Neurophysiol; 2008 Nov; 100(5):2929-39. PubMed ID: 18815342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective stimulation of catecholamine release from bovine adrenal chromaffin cells by an ionotropic purinergic receptor sensitive to 2-methylthio ATP.
    Tomé AR; Castro E; Santos RM; Rosário LM
    BMC Neurosci; 2007 Jun; 8():41. PubMed ID: 17584495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional distribution of Ca2+-coupled P2 purinergic receptors among adrenergic and noradrenergic bovine adrenal chromaffin cells.
    Tomé AR; Castro E; Santos RM; Rosário LM
    BMC Neurosci; 2007 Jun; 8():39. PubMed ID: 17570839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.