These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10651275)

  • 21. TASSER: an automated method for the prediction of protein tertiary structures in CASP6.
    Zhang Y; Arakaki AK; Skolnick J
    Proteins; 2005; 61 Suppl 7():91-98. PubMed ID: 16187349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.
    Scheeff ED; Bourne PE
    BMC Bioinformatics; 2006 Sep; 7():410. PubMed ID: 16970830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein threading by recursive dynamic programming.
    Thiele R; Zimmer R; Lengauer T
    J Mol Biol; 1999 Jul; 290(3):757-79. PubMed ID: 10395828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Filtered neighbors threading.
    Bienkowska JR; Rogers RG; Smith TF
    Proteins; 1999 Nov; 37(3):346-59. PubMed ID: 10591096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multiple-template approach to protein threading.
    Peng J; Xu J
    Proteins; 2011 Jun; 79(6):1930-9. PubMed ID: 21465564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible algorithm for direct multiple alignment of protein structures and sequences.
    Godzik A; Skolnick J
    Comput Appl Biosci; 1994 Dec; 10(6):587-96. PubMed ID: 7704657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protalign: a 3-dimensional protein alignment assessment tool.
    Meads D; Hansen MD; Pang A
    Pac Symp Biocomput; 1999; ():354-67. PubMed ID: 10380210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated structure prediction of weakly homologous proteins on a genomic scale.
    Zhang Y; Skolnick J
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7594-9. PubMed ID: 15126668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The utility of artificially evolved sequences in protein threading and fold recognition.
    Brylinski M
    J Theor Biol; 2013 Jul; 328():77-88. PubMed ID: 23542050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model.
    Kolinski A; Skolnick J
    Proteins; 1998 Sep; 32(4):475-94. PubMed ID: 9726417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins.
    Bhattacharya S; Roche R; Moussad B; Bhattacharya D
    Proteins; 2022 Feb; 90(2):579-588. PubMed ID: 34599831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple model approach--dealing with alignment ambiguities in protein modeling.
    Pawłowski K; Jaroszewski L; Bierzyñski A; Godzik A
    Pac Symp Biocomput; 1997; ():328-39. PubMed ID: 9390303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. eThread: a highly optimized machine learning-based approach to meta-threading and the modeling of protein tertiary structures.
    Brylinski M; Lingam D
    PLoS One; 2012; 7(11):e50200. PubMed ID: 23185577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Template-based and free modeling by RAPTOR++ in CASP8.
    Xu J; Peng J; Zhao F
    Proteins; 2009; 77 Suppl 9(Suppl 9):133-7. PubMed ID: 19722267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A "FRankenstein's monster" approach to comparative modeling: merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation.
    Kosinski J; Cymerman IA; Feder M; Kurowski MA; Sasin JM; Bujnicki JM
    Proteins; 2003; 53 Suppl 6():369-79. PubMed ID: 14579325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Threading using neural nEtwork (TUNE): the measure of protein sequence-structure compatibility.
    Lin K; May AC; Taylor WR
    Bioinformatics; 2002 Oct; 18(10):1350-7. PubMed ID: 12376379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of profile-to-profile alignment parameters for one-dimensional threading.
    Gniewek P; Kolinski A; Gront D
    J Comput Biol; 2012 Jul; 19(7):879-86. PubMed ID: 22731622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.