These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10651643)

  • 1. Effects of phosphorylation on binding of catecholamines to tyrosine hydroxylase: specificity and thermodynamics.
    Ramsey AJ; Fitzpatrick PF
    Biochemistry; 2000 Feb; 39(4):773-8. PubMed ID: 10651643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phosphorylation by protein kinase A on binding of catecholamines to the human tyrosine hydroxylase isoforms.
    Sura GR; Daubner SC; Fitzpatrick PF
    J Neurochem; 2004 Aug; 90(4):970-8. PubMed ID: 15287903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of substitution at serine 40 of tyrosine hydroxylase on catecholamine binding.
    McCulloch RI; Daubner SC; Fitzpatrick PF
    Biochemistry; 2001 Jun; 40(24):7273-8. PubMed ID: 11401575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism.
    Ramsey AJ; Fitzpatrick PF
    Biochemistry; 1998 Jun; 37(25):8980-6. PubMed ID: 9636040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification by hydrogen/deuterium exchange of structural changes in tyrosine hydroxylase associated with regulation.
    Wang S; Sura GR; Dangott LJ; Fitzpatrick PF
    Biochemistry; 2009 Jun; 48(22):4972-9. PubMed ID: 19371093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of catecholamine binding in tyrosine hydroxylase.
    Briggs GD; Gordon SL; Dickson PW
    Biochemistry; 2011 Mar; 50(9):1545-55. PubMed ID: 21235236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of recombinant human tyrosine hydroxylase isozymes by catecholamine binding and phosphorylation. Structure/activity studies and mechanistic implications.
    Almås B; Le Bourdelles B; Flatmark T; Mallet J; Haavik J
    Eur J Biochem; 1992 Oct; 209(1):249-55. PubMed ID: 1356768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine hydroxylase activity is regulated by two distinct dopamine-binding sites.
    Gordon SL; Quinsey NS; Dunkley PR; Dickson PW
    J Neurochem; 2008 Aug; 106(4):1614-23. PubMed ID: 18513370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The low affinity dopamine binding site on tyrosine hydroxylase: the role of the N-terminus and in situ regulation of enzyme activity.
    Gordon SL; Webb JK; Shehadeh J; Dunkley PR; Dickson PW
    Neurochem Res; 2009 Oct; 34(10):1830-7. PubMed ID: 19448984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine hydroxylase: regulation by feedback inhibition and phosphorylation.
    Dickson PW; Briggs GD
    Adv Pharmacol; 2013; 68():13-21. PubMed ID: 24054138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of intrinsic rate constants in the tyrosine hydroxylase reaction.
    Eser BE; Fitzpatrick PF
    Biochemistry; 2010 Jan; 49(3):645-52. PubMed ID: 20025246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The solution structure of the regulatory domain of tyrosine hydroxylase.
    Zhang S; Huang T; Ilangovan U; Hinck AP; Fitzpatrick PF
    J Mol Biol; 2014 Apr; 426(7):1483-97. PubMed ID: 24361276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation.
    Bueno-Carrasco MT; Cuéllar J; Flydal MI; Santiago C; Kråkenes TA; Kleppe R; López-Blanco JR; Marcilla M; Teigen K; Alvira S; Chacón P; Martinez A; Valpuesta JM
    Nat Commun; 2022 Jan; 13(1):74. PubMed ID: 35013193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source and physiological significance of plasma 3,4-dihydroxyphenylalanine in the rat.
    Eisenhofer G; Goldstein DS; Ropchak TG; Kopin IJ
    J Neurochem; 1988 Oct; 51(4):1204-13. PubMed ID: 2901461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic domain surface residues mediating catecholamine inhibition in tyrosine hydroxylase.
    Briggs GD; Bulley J; Dickson PW
    J Biochem; 2014 Mar; 155(3):183-93. PubMed ID: 24334288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of the MAP kinase ERK2 for phosphorylation of tyrosine hydroxylase.
    Royo M; Daubner SC; Fitzpatrick PF
    Arch Biochem Biophys; 2004 Mar; 423(2):247-52. PubMed ID: 15001389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the cofactor binding domain of bovine striatal tyrosine hydroxylase at physiological pH upon cAMP-dependent phosphorylation mapped with tetrahydrobiopterin analogues.
    Bailey SW; Dillard SB; Thomas KB; Ayling JE
    Biochemistry; 1989 Jan; 28(2):494-504. PubMed ID: 2565733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited proteolysis of rat brain tyrosine hydroxylase defines an N-terminal region required for regulation of cofactor binding and directing substrate specificity.
    Abate C; Joh TH
    J Mol Neurosci; 1991; 2(4):203-15. PubMed ID: 1676292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of action of salsolinol on tyrosine hydroxylase.
    Briggs GD; Nagy GM; Dickson PW
    Neurochem Int; 2013 Dec; 63(8):726-31. PubMed ID: 24083987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinic stimulation of catecholamine synthesis and tyrosine hydroxylase phosphorylation in cervine adrenal medullary chromaffin cells.
    Knowles PJ; Douglas SA; Bunn SJ
    J Neuroendocrinol; 2011 Mar; 23(3):224-31. PubMed ID: 21121973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.