BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10651855)

  • 1. Routes of zinc entry in mouse cortical neurons: role in zinc-induced neurotoxicity.
    Marin P; Israël M; Glowinski J; Prémont J
    Eur J Neurosci; 2000 Jan; 12(1):8-18. PubMed ID: 10651855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors.
    Koh JY; Choi DW
    Neuroscience; 1994 Jun; 60(4):1049-57. PubMed ID: 7936205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of intracellular free zinc in living cortical neurons: routes of entry.
    Sensi SL; Canzoniero LM; Yu SP; Ying HS; Koh JY; Kerchner GA; Choi DW
    J Neurosci; 1997 Dec; 17(24):9554-64. PubMed ID: 9391010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide for the detection of zinc in living sperm cells.
    Andrews JC; Nolan JP; Hammerstedt RH; Bavister BD
    Cytometry; 1995 Oct; 21(2):153-9. PubMed ID: 8582235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones.
    Kerchner GA; Canzoniero LM; Yu SP; Ling C; Choi DW
    J Physiol; 2000 Oct; 528 Pt 1(Pt 1):39-52. PubMed ID: 11018104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMPA/Zn(2+)-induced neurotoxicity in rat primary cortical cultures: involvement of L-type calcium channels.
    Freund WD; Reddig S
    Brain Res; 1994 Aug; 654(2):257-64. PubMed ID: 7527288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPA receptor activation potentiates zinc neurotoxicity.
    Weiss JH; Hartley DM; Koh JY; Choi DW
    Neuron; 1993 Jan; 10(1):43-9. PubMed ID: 7678965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures.
    Kim EY; Koh JY; Kim YH; Sohn S; Joe E; Gwag BJ
    Eur J Neurosci; 1999 Jan; 11(1):327-34. PubMed ID: 9987035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production.
    Sensi SL; Yin HZ; Carriedo SG; Rao SS; Weiss JH
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2414-9. PubMed ID: 10051656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kainate-stimulated Zn2+ uptake labels cortical neurons with Ca2+-permeable AMPA/kainate channels.
    Yin HZ; Ha DH; Carriedo SG; Weiss JH
    Brain Res; 1998 Jan; 781(1-2):45-56. PubMed ID: 9507061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of excitatory amino acid neurotoxicity in N-methyl-D-aspartate receptor-deficient mouse cortical neuronal cells.
    Tokita Y; Bessho Y; Masu M; Nakamura K; Nakao K; Katsuki M; Nakanishi S
    Eur J Neurosci; 1996 Jan; 8(1):69-78. PubMed ID: 8713451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An early loss in membrane protein kinase C activity precedes the excitatory amino acid-induced death of primary cortical neurons.
    Durkin JP; Tremblay R; Buchan A; Blosser J; Chakravarthy B; Mealing G; Morley P; Song D
    J Neurochem; 1996 Mar; 66(3):951-62. PubMed ID: 8769854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of Zn2+ neurotoxicity by aspirin: role of N-type Ca2+ channel and the carboxyl acid group.
    Kim EY; Chang SY; Chung JM; Ryu BR; Joo CK; Moon HS; Kang K; Yoon SH; Han PL; Gwag BJ
    Neurobiol Dis; 2001 Oct; 8(5):774-83. PubMed ID: 11592847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction.
    Sensi SL; Yin HZ; Weiss JH
    Eur J Neurosci; 2000 Oct; 12(10):3813-8. PubMed ID: 11029652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are NMDA or AMPA/kainate receptor antagonists more efficacious in the delayed treatment of excitotoxic neuronal injury?
    Prehn JH; Lippert K; Krieglstein J
    Eur J Pharmacol; 1995 Jan; 292(2):179-89. PubMed ID: 7720791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical and striatal neuronal cultures of the same embryonic origin show intrinsic differences in glutamate receptor expression and vulnerability to excitotoxicity.
    Kovács AD; Cebers G; Cebere A; Moreira T; Liljequist S
    Exp Neurol; 2001 Mar; 168(1):47-62. PubMed ID: 11170720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of K(+) efflux in apoptosis induced by AMPA and kainate in mouse cortical neurons.
    Xiao AY; Homma M; Wang XQ; Wang X; Yu SP
    Neuroscience; 2001; 108(1):61-7. PubMed ID: 11738131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate triggers preferential Zn2+ flux through Ca2+ permeable AMPA channels and consequent ROS production.
    Sensi SL; Yin HZ; Weiss JH
    Neuroreport; 1999 Jun; 10(8):1723-7. PubMed ID: 10501564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of neuroprotection from excitotoxicity by moderate and profound hypothermia in cultured cortical neurons unmasks a temperature-insensitive component of glutamate neurotoxicity.
    Tymianski M; Sattler R; Zabramski JM; Spetzler RF
    J Cereb Blood Flow Metab; 1998 Aug; 18(8):848-67. PubMed ID: 9701346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.