BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 10652021)

  • 1. Glycosphingolipid depletion in fabry disease lymphoblasts with potent inhibitors of glucosylceramide synthase.
    Abe A; Arend LJ; Lee L; Lingwood C; Brady RO; Shayman JA
    Kidney Int; 2000 Feb; 57(2):446-54. PubMed ID: 10652021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation.
    Abe A; Gregory S; Lee L; Killen PD; Brady RO; Kulkarni A; Shayman JA
    J Clin Invest; 2000 Jun; 105(11):1563-71. PubMed ID: 10841515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro model of Fabry disease.
    Shu L; Murphy HS; Cooling L; Shayman JA
    J Am Soc Nephrol; 2005 Sep; 16(9):2636-45. PubMed ID: 16033856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types.
    Welford RWD; Mühlemann A; Garzotti M; Rickert V; Groenen PMA; Morand O; Üçeyler N; Probst MR
    Hum Mol Genet; 2018 Oct; 27(19):3392-3403. PubMed ID: 29982630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agents for the treatment of glycosphingolipid storage disorders.
    Abe A; Wild SR; Lee WL; Shayman JA
    Curr Drug Metab; 2001 Sep; 2(3):331-8. PubMed ID: 11513334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved inhibitors of glucosylceramide synthase.
    Lee L; Abe A; Shayman JA
    J Biol Chem; 1999 May; 274(21):14662-9. PubMed ID: 10329660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease.
    Marshall J; Ashe KM; Bangari D; McEachern K; Chuang WL; Pacheco J; Copeland DP; Desnick RJ; Shayman JA; Scheule RK; Cheng SH
    PLoS One; 2010 Nov; 5(11):e15033. PubMed ID: 21124789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of Enzyme and Substrate Reduction Therapy with a Novel Antagonist of Glucosylceramide Synthase for Fabry Disease.
    Ashe KM; Budman E; Bangari DS; Siegel CS; Nietupski JB; Wang B; Desnick RJ; Scheule RK; Leonard JP; Cheng SH; Marshall J
    Mol Med; 2015 Apr; 21(1):389-99. PubMed ID: 25938659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lucerastat, an Iminosugar for Substrate Reduction Therapy: Tolerability, Pharmacodynamics, and Pharmacokinetics in Patients With Fabry Disease on Enzyme Replacement.
    Guérard N; Oder D; Nordbeck P; Zwingelstein C; Morand O; Welford RWD; Dingemanse J; Wanner C
    Clin Pharmacol Ther; 2018 Apr; 103(4):703-711. PubMed ID: 28699267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of phospholipase C-gamma activity by glycosphingolipids.
    Shu L; Lee L; Shayman JA
    J Biol Chem; 2002 May; 277(21):18447-53. PubMed ID: 11886852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor.
    Fan JQ; Ishii S; Asano N; Suzuki Y
    Nat Med; 1999 Jan; 5(1):112-5. PubMed ID: 9883849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for globotriaosylceramide regulation and enzyme uptake in immortalized aortic endothelial cells from Fabry mice.
    Meng XL; Day TS; McNeill N; Ashcraft P; Frischmuth T; Cheng SH; Liu ZP; Shen JS; Schiffmann R
    J Inherit Metab Dis; 2016 May; 39(3):447-455. PubMed ID: 26960552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a new inhibitor of glucosylceramide synthase.
    Jimbo M; Yamagishi K; Yamaki T; Nunomura K; Kabayama K; Igarashi Y; Inokuchi JI
    J Biochem; 2000 Mar; 127(3):485-91. PubMed ID: 10731721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives.
    Asano N; Ishii S; Kizu H; Ikeda K; Yasuda K; Kato A; Martin OR; Fan JQ
    Eur J Biochem; 2000 Jul; 267(13):4179-86. PubMed ID: 10866822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolar structure and protein sorting are maintained in NIH 3T3 cells independent of glycosphingolipid depletion.
    Shu L; Lee L; Chang Y; Holzman LB; Edwards CA; Shelden E; Shayman JA
    Arch Biochem Biophys; 2000 Jan; 373(1):83-90. PubMed ID: 10620326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone Therapy in Fabry Disease.
    Weidemann F; Jovanovic A; Herrmann K; Vardarli I
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severe endothelial dysfunction in the aorta of a mouse model of Fabry disease; partial prevention by N-butyldeoxynojirimycin treatment.
    Heare T; Alp NJ; Priestman DA; Kulkarni AB; Qasba P; Butters TD; Dwek RA; Clarke K; Channon KM; Platt FM
    J Inherit Metab Dis; 2007 Feb; 30(1):79-87. PubMed ID: 17189993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive glycosphingolipid depletion in the liver and lymphoid organs of mice treated with N-butyldeoxynojirimycin.
    Platt FM; Reinkensmeier G; Dwek RA; Butters TD
    J Biol Chem; 1997 Aug; 272(31):19365-72. PubMed ID: 9235935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines.
    Benjamin ER; Flanagan JJ; Schilling A; Chang HH; Agarwal L; Katz E; Wu X; Pine C; Wustman B; Desnick RJ; Lockhart DJ; Valenzano KJ
    J Inherit Metab Dis; 2009 Jun; 32(3):424-40. PubMed ID: 19387866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase.
    Nicholson KM; Quinn DM; Kellett GL; Warr JR
    Br J Cancer; 1999 Oct; 81(3):423-30. PubMed ID: 10507766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.