These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 10652143)
1. Short communication: the N-terminal fragment of Arabidopsis photomorphogenic repressor COP1 maintains partial function and acts in a concentration-dependent manner. Stoop-Myer C; Torii KU; McNellis TW; Coleman JE; Deng XW Plant J; 1999 Dec; 20(6):713-7. PubMed ID: 10652143 [TBL] [Abstract][Full Text] [Related]
2. Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis. McNellis TW; Torii KU; Deng XW Plant Cell; 1996 Sep; 8(9):1491-503. PubMed ID: 8837504 [TBL] [Abstract][Full Text] [Related]
3. Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. Torii KU; McNellis TW; Deng XW EMBO J; 1998 Oct; 17(19):5577-87. PubMed ID: 9755158 [TBL] [Abstract][Full Text] [Related]
4. The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein. Torii KU; Stoop-Myer CD; Okamoto H; Coleman JE; Matsui M; Deng XW J Biol Chem; 1999 Sep; 274(39):27674-81. PubMed ID: 10488108 [TBL] [Abstract][Full Text] [Related]
5. Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in planta. Stacey MG; Kopp OR; Kim TH; von Arnim AG Plant Physiol; 2000 Nov; 124(3):979-90. PubMed ID: 11080276 [TBL] [Abstract][Full Text] [Related]
6. Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. von Arnim AG; Osterlund MT; Kwok SF; Deng XW Plant Physiol; 1997 Jul; 114(3):779-88. PubMed ID: 9232869 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. McNellis TW; von Arnim AG; Deng XW Plant Cell; 1994 Oct; 6(10):1391-400. PubMed ID: 7994173 [TBL] [Abstract][Full Text] [Related]
9. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Wang H; Ma LG; Li JM; Zhao HY; Deng XW Science; 2001 Oct; 294(5540):154-8. PubMed ID: 11509693 [TBL] [Abstract][Full Text] [Related]
10. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. von Arnim AG; Deng XW Cell; 1994 Dec; 79(6):1035-45. PubMed ID: 8001131 [TBL] [Abstract][Full Text] [Related]
11. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Ang LH; Chattopadhyay S; Wei N; Oyama T; Okada K; Batschauer A; Deng XW Mol Cell; 1998 Jan; 1(2):213-22. PubMed ID: 9659918 [TBL] [Abstract][Full Text] [Related]
12. Evidence for functional conservation of a mammalian homologue of the light-responsive plant protein COP1. Wang H; Kang D; Deng XW; Wei N Curr Biol; 1999 Jul; 9(13):711-4. PubMed ID: 10395541 [TBL] [Abstract][Full Text] [Related]
13. COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing Zhao X; Jiang Y; Li J; Huq E; Chen ZJ; Xu D; Deng XW Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11631-11636. PubMed ID: 30352855 [TBL] [Abstract][Full Text] [Related]
14. COP1b, an isoform of COP1 generated by alternative splicing, has a negative effect on COP1 function in regulating light-dependent seedling development in Arabidopsis. Zhou DX; Kim YJ; Li YF; Carol P; Mache R Mol Gen Genet; 1998 Feb; 257(4):387-91. PubMed ID: 9529519 [TBL] [Abstract][Full Text] [Related]
15. Mutations in the N-terminal kinase-like domain of the repressor of photomorphogenesis SPA1 severely impair SPA1 function but not light responsiveness in Arabidopsis. Holtkotte X; Dieterle S; Kokkelink L; Artz O; Leson L; Fittinghoff K; Hayama R; Ahmad M; Hoecker U Plant J; 2016 Oct; 88(2):205-218. PubMed ID: 27310313 [TBL] [Abstract][Full Text] [Related]
16. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. Holm M; Hardtke CS; Gaudet R; Deng XW EMBO J; 2001 Jan; 20(1-2):118-27. PubMed ID: 11226162 [TBL] [Abstract][Full Text] [Related]
17. FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Wang JG; Chen CH; Chien CT; Hsieh HL Plant Physiol; 2011 Jun; 156(2):631-46. PubMed ID: 21525334 [TBL] [Abstract][Full Text] [Related]
18. The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. Hoecker U; Quail PH J Biol Chem; 2001 Oct; 276(41):38173-8. PubMed ID: 11461903 [TBL] [Abstract][Full Text] [Related]
19. Role of a COP1 interactive protein in mediating light-regulated gene expression in arabidopsis. Yamamoto YY; Matsui M; Ang LH; Deng XW Plant Cell; 1998 Jul; 10(7):1083-94. PubMed ID: 9668129 [TBL] [Abstract][Full Text] [Related]
20. Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation. Ranjan A; Dickopf S; Ullrich KK; Rensing SA; Hoecker U BMC Plant Biol; 2014 Jul; 14():178. PubMed ID: 24985152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]