BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10652317)

  • 1. The enhanced affinity for thiolate anion and activation of enzyme-bound glutathione is governed by an arginine residue of human Mu class glutathione S-transferases.
    Patskovsky YV; Patskovska LN; Listowsky I
    J Biol Chem; 2000 Feb; 275(5):3296-304. PubMed ID: 10652317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a.
    Patskovsky YV; Patskovska LN; Listowsky I
    Biochemistry; 1999 Jan; 38(4):1193-202. PubMed ID: 9930979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of the slow ionization of glutathione by microsomal glutathione transferase MGST1.
    Morgenstern R; Svensson R; Bernat BA; Armstrong RN
    Biochemistry; 2001 Mar; 40(11):3378-84. PubMed ID: 11258959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-steady-state kinetic characterization of thiolate anion formation in human leukotriene C₄ synthase.
    Rinaldo-Matthis A; Ahmad S; Wetterholm A; Lachmann P; Morgenstern R; Haeggström JZ
    Biochemistry; 2012 Jan; 51(4):848-56. PubMed ID: 22217203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine 104 is a key catalytic residue in leukotriene C4 synthase.
    Rinaldo-Matthis A; Wetterholm A; Martinez Molina D; Holm J; Niegowski D; Ohlson E; Nordlund P; Morgenstern R; Haeggström JZ
    J Biol Chem; 2010 Dec; 285(52):40771-6. PubMed ID: 20980252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic characterization of thiolate anion formation and chemical catalysis of activated microsomal glutathione transferase 1.
    Svensson R; Alander J; Armstrong RN; Morgenstern R
    Biochemistry; 2004 Jul; 43(27):8869-77. PubMed ID: 15236595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine 15 stabilizes an S(N)Ar reaction transition state and the binding of anionic ligands at the active site of human glutathione transferase A1-1.
    Gildenhuys S; Dobreva M; Kinsley N; Sayed Y; Burke J; Pelly S; Gordon GP; Sayed M; Sewell T; Dirr HW
    Biophys Chem; 2010 Feb; 146(2-3):118-25. PubMed ID: 19959275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I.
    Labrou NE; Mello LV; Clonis YD
    Biochem J; 2001 Aug; 358(Pt 1):101-10. PubMed ID: 11485557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition state model and mechanism of nucleophilic aromatic substitution reactions catalyzed by human glutathione S-transferase M1a-1a.
    Patskovsky Y; Patskovska L; Almo SC; Listowsky I
    Biochemistry; 2006 Mar; 45(12):3852-62. PubMed ID: 16548513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An asparagine-phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases.
    Patskovsky YV; Patskovska LN; Listowsky I
    Biochemistry; 1999 Dec; 38(49):16187-94. PubMed ID: 10587441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a new C-terminal tail in the H-site of human glutathione transferase P1-1: structural and functional consequences.
    Micaloni C; Kong GK; Mazzetti AP; Nuccetelli M; Antonini G; Stella L; McKinstry WJ; Polekhina G; Rossjohn J; Federici G; Ricci G; Parker MW; Lo Bello M
    J Mol Biol; 2003 Jan; 325(1):111-22. PubMed ID: 12473455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity.
    Ahmad S; Thulasingam M; Palombo I; Daley DO; Johnson KA; Morgenstern R; Haeggström JZ; Rinaldo-Matthis A
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1365-71. PubMed ID: 26066610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functionally conserved basic residue in glutathione transferases interacts with the glycine moiety of glutathione and is pivotal for enzyme catalysis.
    Vararattanavech A; Ketterman AJ
    Biochem J; 2007 Sep; 406(2):247-56. PubMed ID: 17523921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps.
    Ahmad S; Niegowski D; Wetterholm A; Haeggström JZ; Morgenstern R; Rinaldo-Matthis A
    Biochemistry; 2013 Mar; 52(10):1755-64. PubMed ID: 23409838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate-64, a newly identified residue of the functionally conserved electron-sharing network contributes to catalysis and structural integrity of glutathione transferases.
    Winayanuwattikun P; Ketterman AJ
    Biochem J; 2007 Mar; 402(2):339-48. PubMed ID: 17100654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human glutathione transferase T2-2 discloses some evolutionary strategies for optimization of the catalytic activity of glutathione transferases.
    Caccuri AM; Antonini G; Board PG; Flanagan J; Parker MW; Paolesse R; Turella P; Chelvanayagam G; Ricci G
    J Biol Chem; 2001 Feb; 276(8):5432-7. PubMed ID: 11044441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The catalytic architecture of leukotriene C4 synthase with two arginine residues.
    Saino H; Ukita Y; Ago H; Irikura D; Nisawa A; Ueno G; Yamamoto M; Kanaoka Y; Lam BK; Austen KF; Miyano M
    J Biol Chem; 2011 May; 286(18):16392-401. PubMed ID: 21454538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensitive core region in the structure of glutathione S-transferases.
    Wongsantichon J; Harnnoi T; Ketterman AJ
    Biochem J; 2003 Aug; 373(Pt 3):759-65. PubMed ID: 12708968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human glutathione transferase T2-2 discloses some evolutionary strategies for optimization of substrate binding to the active site of glutathione transferases.
    Caccuri AM; Antonini G; Board PG; Flanagan J; Parker MW; Paolesse R; Turella P; Federici G; Lo Bello M; Ricci G
    J Biol Chem; 2001 Feb; 276(8):5427-31. PubMed ID: 11044442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.