BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10652362)

  • 1. The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors.
    Weixel KM; Bradbury NA
    J Biol Chem; 2000 Feb; 275(5):3655-60. PubMed ID: 10652362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocytic adaptor complexes bind the C-terminal domain of CFTR.
    Weixel KM; Bradbury NA
    Pflugers Arch; 2001; 443 Suppl 1():S70-4. PubMed ID: 11845307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mu 2 binding directs the cystic fibrosis transmembrane conductance regulator to the clathrin-mediated endocytic pathway.
    Weixel KM; Bradbury NA
    J Biol Chem; 2001 Dec; 276(49):46251-9. PubMed ID: 11560923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator.
    Hu W; Howard M; Lukacs GL
    Biochem J; 2001 Mar; 354(Pt 3):561-72. PubMed ID: 11237860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disabled-2 protein facilitates assembly polypeptide-2-independent recruitment of cystic fibrosis transmembrane conductance regulator to endocytic vesicles in polarized human airway epithelial cells.
    Cihil KM; Ellinger P; Fellows A; Stolz DB; Madden DR; Swiatecka-Urban A
    J Biol Chem; 2012 Apr; 287(18):15087-99. PubMed ID: 22399289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and biophysical identification of cystic fibrosis transmembrane conductance regulator chloride channels as components of endocytic clathrin-coated vesicles.
    Bradbury NA; Cohn JA; Venglarik CJ; Bridges RJ
    J Biol Chem; 1994 Mar; 269(11):8296-302. PubMed ID: 7510684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-AP-2 directs myosin VI-dependent endocytosis of cystic fibrosis transmembrane conductance regulator chloride channels in the intestine.
    Collaco A; Jakab R; Hegan P; Mooseker M; Ameen N
    J Biol Chem; 2010 May; 285(22):17177-87. PubMed ID: 20351096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the internalization pathways for the cystic fibrosis transmembrane conductance regulator.
    Bradbury NA; Clark JA; Watkins SC; Widnell CC; Smith HS; Bridges RJ
    Am J Physiol; 1999 Apr; 276(4):L659-68. PubMed ID: 10198364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AP2 α modulates cystic fibrosis transmembrane conductance regulator function in the human intestine.
    Kumari V; Desai S; Ameen NA
    J Cyst Fibros; 2017 May; 16(3):327-334. PubMed ID: 28438500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors.
    Lee JH; Richter W; Namkung W; Kim KH; Kim E; Conti M; Lee MG
    J Biol Chem; 2007 Apr; 282(14):10414-22. PubMed ID: 17244609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal.
    Prince LS; Peter K; Hatton SR; Zaliauskiene L; Cotlin LF; Clancy JP; Marchase RB; Collawn JF
    J Biol Chem; 1999 Feb; 274(6):3602-9. PubMed ID: 9920908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different domains of the AP-1 adaptor complex are required for Golgi membrane binding and clathrin recruitment.
    Traub LM; Kornfeld S; Ungewickell E
    J Biol Chem; 1995 Mar; 270(9):4933-42. PubMed ID: 7876268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation.
    Lukacs GL; Segal G; Kartner N; Grinstein S; Zhang F
    Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):353-61. PubMed ID: 9371688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression.
    Cheng J; Moyer BD; Milewski M; Loffing J; Ikeda M; Mickle JE; Cutting GR; Li M; Stanton BA; Guggino WB
    J Biol Chem; 2002 Feb; 277(5):3520-9. PubMed ID: 11707463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin VI regulates endocytosis of the cystic fibrosis transmembrane conductance regulator.
    Swiatecka-Urban A; Boyd C; Coutermarsh B; Karlson KH; Barnaby R; Aschenbrenner L; Langford GM; Hasson T; Stanton BA
    J Biol Chem; 2004 Sep; 279(36):38025-31. PubMed ID: 15247260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epsin binds to clathrin by associating directly with the clathrin-terminal domain. Evidence for cooperative binding through two discrete sites.
    Drake MT; Downs MA; Traub LM
    J Biol Chem; 2000 Mar; 275(9):6479-89. PubMed ID: 10692452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits.
    Laporte SA; Oakley RH; Holt JA; Barak LS; Caron MG
    J Biol Chem; 2000 Jul; 275(30):23120-6. PubMed ID: 10770944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator.
    Picciano JA; Ameen N; Grant BD; Bradbury NA
    Am J Physiol Cell Physiol; 2003 Nov; 285(5):C1009-18. PubMed ID: 12839834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting.
    Heilker R; Manning-Krieg U; Zuber JF; Spiess M
    EMBO J; 1996 Jun; 15(11):2893-9. PubMed ID: 8654387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator.
    Fu L; Rab A; Tang LP; Rowe SM; Bebok Z; Collawn JF
    Biochem J; 2012 Jan; 441(2):633-43. PubMed ID: 21995445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.