These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10653041)

  • 1. An ex vivo model to study transport processes and fluid flow in loaded bone.
    Knothe Tate ML; Knothe U
    J Biomech; 2000 Feb; 33(2):247-54. PubMed ID: 10653041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation.
    Knothe Tate ML; Knothe U; Niederer P
    Am J Med Sci; 1998 Sep; 316(3):189-95. PubMed ID: 9749561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation.
    Knothe Tate ML; Steck R; Forwood MR; Niederer P
    J Exp Biol; 2000 Sep; 203(Pt 18):2737-45. PubMed ID: 10952874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading.
    Knothe Tate ML; Niederer P; Knothe U
    Bone; 1998 Feb; 22(2):107-17. PubMed ID: 9477233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone.
    Goulet GC; Hamilton N; Cooper D; Coombe D; Tran D; Martinuzzi R; Zernicke RF
    J Biomech; 2008 Jul; 41(10):2169-75. PubMed ID: 18533159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite difference model of load-induced fluid displacements within bone under mechanical loading.
    Steck R; Niederer P; Knothe Tate ML
    Med Eng Phys; 2000 Mar; 22(2):117-25. PubMed ID: 10854965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling tracer transport in an osteon under cyclic loading.
    Wang L; Cowin SC; Weinbaum S; Fritton SP
    Ann Biomed Eng; 2000; 28(10):1200-9. PubMed ID: 11144981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of interstitial fluid flow in the remodeling response to fatigue loading.
    Tami AE; Nasser P; Verborgt O; Schaffler MB; Knothe Tate ML
    J Bone Miner Res; 2002 Nov; 17(11):2030-7. PubMed ID: 12412811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone.
    Steck R; Niederer P; Knothe Tate ML
    J Theor Biol; 2003 Jan; 220(2):249-59. PubMed ID: 12468296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical loading modulates glutamate receptor subunit expression in bone.
    Szczesniak AM; Gilbert RW; Mukhida M; Anderson GI
    Bone; 2005 Jul; 37(1):63-73. PubMed ID: 15922681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow.
    Price C; Zhou X; Li W; Wang L
    J Bone Miner Res; 2011 Feb; 26(2):277-85. PubMed ID: 20715178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ex vivo model for investigation of fluid displacements in bone after endoprosthesis implantation.
    Gatzka C; Schneider E; Knothe Tate ML; Knothe U; Niederer P; Knothe Tate ML
    J Mater Sci Mater Med; 1999 Dec; 10(12):801-6. PubMed ID: 15347955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico modeling of bone adaptation to rest-inserted loading: Strain energy density versus fluid flow as stimulus.
    Tiwari AK; Kumar R; Tripathi D; Badhyal S
    J Theor Biol; 2018 Jun; 446():110-127. PubMed ID: 29534894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral fluid transport in an ex vivo system.
    Hislop BD; Mercer AK; Whitley AG; Myers EP; Mackin M; Heveran CM; June RK
    Osteoarthritis Cartilage; 2024 Jul; 32(7):907-911. PubMed ID: 38631555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canalicular fluid flow induced by bending of a long bone.
    Srinivasan S; Gross TS
    Med Eng Phys; 2000 Mar; 22(2):127-33. PubMed ID: 10854966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive fatigue fracture model of the rat ulna.
    Tami AE; Nasser P; Schaffler MB; Knothe Tate ML
    J Orthop Res; 2003 Nov; 21(6):1018-24. PubMed ID: 14554214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.