BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10653620)

  • 1. Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans.
    Junkersdorf B; Bauer H; Gutzeit HO
    Bioelectromagnetics; 2000 Feb; 21(2):100-6. PubMed ID: 10653620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic nematodes as biomonitors of microwave-induced stress.
    Daniells C; Duce I; Thomas D; Sewell P; Tattersall J; de Pomerai D
    Mutat Res; 1998 Mar; 399(1):55-64. PubMed ID: 9635489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A small temperature rise may contribute towards the apparent induction by microwaves of heat-shock gene expression in the nematode Caenorhabditis Elegans.
    Dawe AS; Smith B; Thomas DW; Greedy S; Vasic N; Gregory A; Loader B; de Pomerai DI
    Bioelectromagnetics; 2006 Feb; 27(2):88-97. PubMed ID: 16342196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous wave and simulated GSM exposure at 1.8 W/kg and 1.8 GHz do not induce hsp16-1 heat-shock gene expression in Caenorhabditis elegans.
    Dawe AS; Nylund R; Leszczynski D; Kuster N; Reader T; De Pomerai DI
    Bioelectromagnetics; 2008 Feb; 29(2):92-9. PubMed ID: 17902155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans.
    Walker GA; White TM; McColl G; Jenkins NL; Babich S; Candido EP; Johnson TE; Lithgow GJ
    J Gerontol A Biol Sci Med Sci; 2001 Jul; 56(7):B281-7. PubMed ID: 11445592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic fields in combination with elevated temperatures affect embryogenesis of Drosophila.
    Michel A; Gutzeit HO
    Biochem Biophys Res Commun; 1999 Nov; 265(1):73-8. PubMed ID: 10548493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of Caenorhabditis elegans to extremely low frequency high magnetic fields induces stress responses.
    Miyakawa T; Yamada S; Harada S; Ishimori T; Yamamoto H; Hosono R
    Bioelectromagnetics; 2001 Jul; 22(5):333-9. PubMed ID: 11424156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of high strength static magnetic fields and ionizing radiation on gene expression and DNA damage in Caenorhabditis elegans.
    Kimura T; Takahashi K; Suzuki Y; Konishi Y; Ota Y; Mori C; Ikenaga T; Takanami T; Saito R; Ichiishi E; Awaji S; Watanabe K; Higashitani A
    Bioelectromagnetics; 2008 Dec; 29(8):605-14. PubMed ID: 18512716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-specific expression, heat inducibility, and biological roles of two hsp16 genes in Caenorhabditis elegans.
    Shim J; Im SH; Lee J
    FEBS Lett; 2003 Feb; 537(1-3):139-45. PubMed ID: 12606046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans.
    Stringham EG; Dixon DK; Jones D; Candido EP
    Mol Biol Cell; 1992 Feb; 3(2):221-33. PubMed ID: 1550963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat-inducible expression of a reporter gene detected by transient assay in zebrafish.
    Adám A; Bártfai R; Lele Z; Krone PH; Orbán L
    Exp Cell Res; 2000 Apr; 256(1):282-90. PubMed ID: 10739675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caenorhabditis elegans as a biomonitor for immunological stress in nematodes.
    Nowell MA; De Pomerai DI; Pritchard DI
    Parasite Immunol; 1999 Oct; 21(10):495-505. PubMed ID: 10587376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and evaluation of a transgenic hsp16-GFP-lacZ Caenorhabditis elegans strain for environmental monitoring.
    David HE; Dawe AS; de Pomerai DI; Jones D; Candido EP; Daniells C
    Environ Toxicol Chem; 2003 Jan; 22(1):111-8. PubMed ID: 12503753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E
    Sun Y; Shi Z; Wang Y; Tang C; Liao Y; Yang C; Cai P
    Int J Radiat Biol; 2018 Dec; 94(12):1159-1166. PubMed ID: 30307357
    [No Abstract]   [Full Text] [Related]  

  • 15. Enhancement in the ATP level and antioxidant capacity of
    Wang Y; Sun Y; Zhang Z; Li Z; Zhang H; Liao Y; Tang C; Cai P
    Int J Radiat Biol; 2020 Dec; 96(12):1633-1640. PubMed ID: 32991227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak electromagnetic fields (50 Hz) elicit a stress response in human cells.
    Tokalov SV; Gutzeit HO
    Environ Res; 2004 Feb; 94(2):145-51. PubMed ID: 14757377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic Caenorhabditis elegans strains as biosensors.
    Candido EP; Jones D
    Trends Biotechnol; 1996 Apr; 14(4):125-9. PubMed ID: 8936433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology.
    Candido EP
    Prog Mol Subcell Biol; 2002; 28():61-78. PubMed ID: 11908066
    [No Abstract]   [Full Text] [Related]  

  • 19. Non-thermal heat-shock response to microwaves.
    de Pomerai D; Daniells C; David H; Allan J; Duce I; Mutwakil M; Thomas D; Sewell P; Tattersall J; Jones D; Candido P
    Nature; 2000 May; 405(6785):417-8. PubMed ID: 10839528
    [No Abstract]   [Full Text] [Related]  

  • 20. Exposure to low-frequency electromagnetic fields does not alter HSP70 expression or HSF-HSE binding in HL60 cells.
    Morehouse CA; Owen RD
    Radiat Res; 2000 May; 153(5 Pt 2):658-62. PubMed ID: 10790289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.