BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 10653652)

  • 1. Charged membrane surfaces impede the protein-mediated transfer of glycosphingolipids between phospholipid bilayers.
    Mattjus P; Pike HM; Molotkovsky JG; Brown RE
    Biochemistry; 2000 Feb; 39(5):1067-75. PubMed ID: 10653652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein mediated glycolipid transfer is inhibited FROM sphingomyelin membranes but enhanced TO sphingomyelin containing raft like membranes.
    Nylund M; Mattjus P
    Biochim Biophys Acta; 2005 May; 1669(2):87-94. PubMed ID: 15893510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycolipid transfer protein mediated transfer of glycosphingolipids between membranes: a model for action based on kinetic and thermodynamic analyses.
    Rao CS; Lin X; Pike HM; Molotkovsky JG; Brown RE
    Biochemistry; 2004 Nov; 43(43):13805-15. PubMed ID: 15504043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General kinetic model for protein-mediated phospholipid transfer between membranes.
    Yoshimura T; Welti R; Helmkamp GM
    Arch Biochem Biophys; 1988 Nov; 266(2):299-312. PubMed ID: 3190230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescence resonance energy transfer approach for monitoring protein-mediated glycolipid transfer between vesicle membranes.
    Mattjus P; Molotkovsky JG; Smaby JM; Brown RE
    Anal Biochem; 1999 Mar; 268(2):297-304. PubMed ID: 10075820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane interaction and activity of the glycolipid transfer protein.
    West G; Nylund M; Peter Slotte J; Mattjus P
    Biochim Biophys Acta; 2006 Nov; 1758(11):1732-42. PubMed ID: 16908009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane curvature effects on glycolipid transfer protein activity.
    Nylund M; Fortelius C; Palonen EK; Molotkovsky JG; Mattjus P
    Langmuir; 2007 Nov; 23(23):11726-33. PubMed ID: 17915897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of phospholipid headgroup composition on the transfer of fluorescent long-chain free fatty acids between membranes.
    Sunderland JE; Storch J
    Biochim Biophys Acta; 1993 Jul; 1168(3):307-14. PubMed ID: 8323971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae.
    Szolderits G; Hermetter A; Paltauf F; Daum G
    Biochim Biophys Acta; 1989 Nov; 986(2):301-9. PubMed ID: 2686754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing for preferential interactions among sphingolipids in bilayer vesicles using the glycolipid transfer protein.
    Mattjus P; Kline A; Pike HM; Molotkovsky JG; Brown RE
    Biochemistry; 2002 Jan; 41(1):266-73. PubMed ID: 11772025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance energy transfer imaging of phospholipid vesicle interaction with a planar phospholipid membrane: undulations and attachment sites in the region of calcium-mediated membrane--membrane adhesion.
    Niles WD; Silvius JR; Cohen FS
    J Gen Physiol; 1996 Mar; 107(3):329-51. PubMed ID: 8868046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-triggered intermembrane exchange of phospholipids and hemifusion by myelin basic protein.
    Cajal Y; Boggs JM; Jain MK
    Biochemistry; 1997 Mar; 36(9):2566-76. PubMed ID: 9054563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutral fluorescence probe with strong ratiometric response to surface charge of phospholipid membranes.
    Duportail G; Klymchenko A; Mely Y; Demchenko A
    FEBS Lett; 2001 Nov; 508(2):196-200. PubMed ID: 11718715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer.
    Wolf DE; Winiski AP; Ting AE; Bocian KM; Pagano RE
    Biochemistry; 1992 Mar; 31(11):2865-73. PubMed ID: 1550813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential association of apocytochrome c with negatively charged phospholipids in mixed model membranes.
    Rietveld A; Berkhout TA; Roenhorst A; Marsh D; de Kruijff B
    Biochim Biophys Acta; 1986 Jun; 858(1):38-46. PubMed ID: 3011094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium/phosphate-induced immobilization of fluorescent phosphatidylserine in synthetic bilayer membranes: inhibition of lipid transfer between vesicles.
    Tanaka Y; Schroit AJ
    Biochemistry; 1986 Apr; 25(8):2141-8. PubMed ID: 3707938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles.
    Hrafnsdóttir S; Nichols JW; Menon AK
    Biochemistry; 1997 Apr; 36(16):4969-78. PubMed ID: 9125519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.