BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 10653697)

  • 1. Drosophila ACT88F indirect flight muscle-specific actin is not N-terminally acetylated: a mutation in N-terminal processing affects actin function.
    Schmitz S; Clayton J; Nongthomba U; Prinz H; Veigel C; Geeves M; Sparrow J
    J Mol Biol; 2000 Feb; 295(5):1201-10. PubMed ID: 10653697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila actin mutants and the study of myofibrillar assembly and function.
    Sparrow JC; Drummond DR; Hennessey ES; Clayton JD; Lindegaard FB
    Symp Soc Exp Biol; 1992; 46():111-29. PubMed ID: 1341030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actomyosin kinetics and in vitro motility of wild-type Drosophila actin and the effects of two mutations in the Act88F gene.
    Anson M; Drummond DR; Geeves MA; Hennessey ES; Ritchie MD; Sparrow JC
    Biophys J; 1995 May; 68(5):1991-2003. PubMed ID: 7612841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics.
    Miller BM; Zhang S; Suggs JA; Swank DM; Littlefield KP; Knowles AF; Bernstein SI
    J Mol Biol; 2005 Oct; 353(1):14-25. PubMed ID: 16154586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation at the N-terminus of actin strengthens weak interaction between actin and myosin.
    Abe A; Saeki K; Yasunaga T; Wakabayashi T
    Biochem Biophys Res Commun; 2000 Feb; 268(1):14-9. PubMed ID: 10652204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene.
    Haigh SE; Salvi SS; Sevdali M; Stark M; Goulding D; Clayton JD; Bullard B; Sparrow JC; Nongthomba U
    Neuromuscul Disord; 2010 Jun; 20(6):363-74. PubMed ID: 20452215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential epitope tagging of actin in transformed Drosophila produces distinct effects on myofibril assembly and function of the indirect flight muscle.
    Brault V; Sauder U; Reedy MC; Aebi U; Schoenenberger CA
    Mol Biol Cell; 1999 Jan; 10(1):135-49. PubMed ID: 9880332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles.
    Nongthomba U; Pasalodos-Sanchez S; Clark S; Clayton JD; Sparrow JC
    J Muscle Res Cell Motil; 2001; 22(2):111-9. PubMed ID: 11519734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments.
    Lehman W; Hatch V; Korman V; Rosol M; Thomas L; Maytum R; Geeves MA; Van Eyk JE; Tobacman LS; Craig R
    J Mol Biol; 2000 Sep; 302(3):593-606. PubMed ID: 10986121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle.
    Nongthomba U; Clark S; Cummins M; Ansari M; Stark M; Sparrow JC
    J Cell Sci; 2004 Apr; 117(Pt 9):1795-805. PubMed ID: 15075240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin residue glu(93) is identified as an amino acid affecting myosin binding.
    Razzaq A; Schmitz S; Veigel C; Molloy JE; Geeves MA; Sparrow JC
    J Biol Chem; 1999 Oct; 274(40):28321-8. PubMed ID: 10497190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin's N-terminal acetyltransferase uncovered.
    Arnesen T; Marmorstein R; Dominguez R
    Cytoskeleton (Hoboken); 2018 Jul; 75(7):318-322. PubMed ID: 30084538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternate pathways for removal of the class II actin initiator methionine.
    Martin DJ; Rubenstein PA
    J Biol Chem; 1987 May; 262(13):6350-6. PubMed ID: 3571262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of formation of actomyosin interface.
    Andreev OA; Reshetnyak YK
    J Mol Biol; 2007 Jan; 365(3):551-4. PubMed ID: 17081565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational processing of the amino terminus affects actin function.
    Hennessey ES; Drummond DR; Sparrow JC
    Eur J Biochem; 1991 Apr; 197(2):345-52. PubMed ID: 1902786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual metabolism of the yeast actin amino terminus.
    Cook RK; Sheff DR; Rubenstein PA
    J Biol Chem; 1991 Sep; 266(25):16825-33. PubMed ID: 1885608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies.
    Iwabata H; Yoshida M; Komatsu Y
    Proteomics; 2005 Dec; 5(18):4653-64. PubMed ID: 16247734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster.
    Drummond DR; Hennessey ES; Sparrow JC
    Mol Gen Genet; 1991 Apr; 226(1-2):70-80. PubMed ID: 1851957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerization, three-dimensional structure and mechanical properties of Ddictyostelium versus rabbit muscle actin filaments.
    Steinmetz MO; Hoenger A; Stoffler D; Noegel AA; Aebi U; Schoenenberger CA
    J Mol Biol; 2000 Oct; 303(2):171-84. PubMed ID: 11023784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional nonequivalence of Drosophila actin isoforms.
    Fyrberg EA; Fyrberg CC; Biggs JR; Saville D; Beall CJ; Ketchum A
    Biochem Genet; 1998 Aug; 36(7-8):271-87. PubMed ID: 9791722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.